Publikation: In-situ Reconnection of Nanoelectrodes over 20 nm Gaps on Polyimide Substrate
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
National Natural Science Foundation of China: 22273041
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The current densities in nowadays electronic circuitry are close to the electromigration threshold that may result in the fracture of circuits due to electromigration, hampering further miniaturization of integrated chips. Flexible electronic devices, which use a flexible material instead of rigid silicon as a substrate, might be prone to fracture problems also due to obligatory mechanical deformation. However, finding the location of fractured nanogaps and in situ repairing such atomic-scale fractured circuits are currently unavailable. To this end, a method is developed to in situ heal nanogaps as large as 20 nm between metallic electrodes on the polyimide (PI)-covered substrate via voltage sweeping, which is typically employed to generate nanogaps rather than heal nanogaps. The reconnection of nanoelectrodes is realized only when the underneath PI is treated with oxygen plasma etching. Assisted by X-ray photoelectron spectroscopy, it is revealed that inductively coupled O2 plasma etching not only changes the surface topography but also changes the chemical binding structure of PI, which in return can be used to immobilize metal atoms migrating along the PI surface to gradually close the nanogap, providing an in situ self-healing paradigm for repairing the atomic scale fractured circuits.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHANG, Xubin, Zhibin ZHAO, Surong ZHANG, Adila ADIJIANG, Tianran ZHAO, Min TAN, Xueyan ZHAO, Qihong HU, Maoning WANG, Takhee LEE, Elke SCHEER, Dong XIANG, 2023. In-situ Reconnection of Nanoelectrodes over 20 nm Gaps on Polyimide Substrate. In: Small Structures. Wiley. 2023, 5(2), 2300283. ISSN 2688-4062. eISSN 2688-4062. Verfügbar unter: doi: 10.1002/sstr.202300283BibTex
@article{Zhang2023-11-21Insit-68607, year={2023}, doi={10.1002/sstr.202300283}, title={In-situ Reconnection of Nanoelectrodes over 20 nm Gaps on Polyimide Substrate}, number={2}, volume={5}, issn={2688-4062}, journal={Small Structures}, author={Zhang, Xubin and Zhao, Zhibin and Zhang, Surong and Adijiang, Adila and Zhao, Tianran and Tan, Min and Zhao, Xueyan and Hu, Qihong and Wang, Maoning and Lee, Takhee and Scheer, Elke and Xiang, Dong}, note={Article Number: 2300283} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68607"> <dc:contributor>Tan, Min</dc:contributor> <dc:contributor>Xiang, Dong</dc:contributor> <dc:contributor>Adijiang, Adila</dc:contributor> <dc:creator>Tan, Min</dc:creator> <dc:creator>Scheer, Elke</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68607/1/Zhang_2-1qeaft5k7s16m7.pdf"/> <dc:creator>Lee, Takhee</dc:creator> <dc:contributor>Lee, Takhee</dc:contributor> <dc:creator>Zhao, Zhibin</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Wang, Maoning</dc:creator> <dc:contributor>Zhang, Surong</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hu, Qihong</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Zhao, Tianran</dc:creator> <dc:creator>Adijiang, Adila</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68607/1/Zhang_2-1qeaft5k7s16m7.pdf"/> <dc:creator>Xiang, Dong</dc:creator> <dc:contributor>Hu, Qihong</dc:contributor> <dc:contributor>Zhao, Tianran</dc:contributor> <dc:contributor>Zhao, Zhibin</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-06T15:02:50Z</dcterms:available> <dc:creator>Zhang, Xubin</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68607"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Zhang, Surong</dc:creator> <dc:contributor>Zhao, Xueyan</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Scheer, Elke</dc:contributor> <dc:creator>Zhao, Xueyan</dc:creator> <dc:contributor>Wang, Maoning</dc:contributor> <dcterms:abstract>The current densities in nowadays electronic circuitry are close to the electromigration threshold that may result in the fracture of circuits due to electromigration, hampering further miniaturization of integrated chips. Flexible electronic devices, which use a flexible material instead of rigid silicon as a substrate, might be prone to fracture problems also due to obligatory mechanical deformation. However, finding the location of fractured nanogaps and in situ repairing such atomic-scale fractured circuits are currently unavailable. To this end, a method is developed to in situ heal nanogaps as large as 20 nm between metallic electrodes on the polyimide (PI)-covered substrate via voltage sweeping, which is typically employed to generate nanogaps rather than heal nanogaps. The reconnection of nanoelectrodes is realized only when the underneath PI is treated with oxygen plasma etching. Assisted by X-ray photoelectron spectroscopy, it is revealed that inductively coupled O2 plasma etching not only changes the surface topography but also changes the chemical binding structure of PI, which in return can be used to immobilize metal atoms migrating along the PI surface to gradually close the nanogap, providing an in situ self-healing paradigm for repairing the atomic scale fractured circuits.</dcterms:abstract> <dcterms:issued>2023-11-21</dcterms:issued> <dc:contributor>Zhang, Xubin</dc:contributor> <dcterms:title>In-situ Reconnection of Nanoelectrodes over 20 nm Gaps on Polyimide Substrate</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-06T15:02:50Z</dc:date> </rdf:Description> </rdf:RDF>