Publikation:

The individual dynamics of affective expression on social media

Lade...
Vorschaubild

Dateien

Pellert_2-1qf6ou3m3nygk5.pdf
Pellert_2-1qf6ou3m3nygk5.pdfGröße: 2.09 MBDownloads: 83

Datum

2020

Autor:innen

Pellert, Max
Schweighofer, Simon

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

EPJ Data Science. SpringerOpen. 2020, 9, 1. eISSN 2193-1127. Available under: doi: 10.1140/epjds/s13688-019-0219-3

Zusammenfassung

Understanding the temporal dynamics of affect is crucial for our understanding human emotions in general. In this study, we empirically test a computational model of affective dynamics by analyzing a large-scale dataset of Facebook status updates using text analysis techniques. Our analyses support the central assumptions of our model: After stimulation, affective states, quantified as valence and arousal, exponentially return to an individual-specific baseline. On average, this baseline is at a slightly positive valence value and at a moderate arousal point below the midpoint. Furthermore, affective expression, in this case posting a status update on Facebook, immediately pushes arousal and valence towards the baseline by a proportional value. These results are robust to the choice of the text analysis technique and illustrate the fast timescale of affective dynamics through social media text. These outcomes are of high relevance for affective computing, the detection and modeling of collective emotions, the refinement of psychological research methodology, and the detection of abnormal, and potentially pathological, individual affect dynamics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Emotions; Social media; Computational modeling

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PELLERT, Max, Simon SCHWEIGHOFER, David GARCIA, 2020. The individual dynamics of affective expression on social media. In: EPJ Data Science. SpringerOpen. 2020, 9, 1. eISSN 2193-1127. Available under: doi: 10.1140/epjds/s13688-019-0219-3
BibTex
@article{Pellert2020indiv-59782,
  year={2020},
  doi={10.1140/epjds/s13688-019-0219-3},
  title={The individual dynamics of affective expression on social media},
  volume={9},
  journal={EPJ Data Science},
  author={Pellert, Max and Schweighofer, Simon and Garcia, David},
  note={Article Number: 1}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59782">
    <dcterms:title>The individual dynamics of affective expression on social media</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T12:19:47Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Garcia, David</dc:contributor>
    <dc:contributor>Pellert, Max</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59782/1/Pellert_2-1qf6ou3m3nygk5.pdf"/>
    <dc:creator>Garcia, David</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Schweighofer, Simon</dc:creator>
    <dc:creator>Pellert, Max</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T12:19:47Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Understanding the temporal dynamics of affect is crucial for our understanding human emotions in general. In this study, we empirically test a computational model of affective dynamics by analyzing a large-scale dataset of Facebook status updates using text analysis techniques. Our analyses support the central assumptions of our model: After stimulation, affective states, quantified as valence and arousal, exponentially return to an individual-specific baseline. On average, this baseline is at a slightly positive valence value and at a moderate arousal point below the midpoint. Furthermore, affective expression, in this case posting a status update on Facebook, immediately pushes arousal and valence towards the baseline by a proportional value. These results are robust to the choice of the text analysis technique and illustrate the fast timescale of affective dynamics through social media text. These outcomes are of high relevance for affective computing, the detection and modeling of collective emotions, the refinement of psychological research methodology, and the detection of abnormal, and potentially pathological, individual affect dynamics.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59782/1/Pellert_2-1qf6ou3m3nygk5.pdf"/>
    <dc:contributor>Schweighofer, Simon</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59782"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen