Publikation: Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Major accidents may cause severe damage to humans and the environment, and can potentially lead to significant losses in a business and societal level. Thus, the understanding of these complex multi-attribute events through the analysis of past accidents might assist the search for strategies to improve engineering system’s safety and design robustness. Therefore, we aim to explore potential relationships among contributing factors by means of assessing approximately 200 major industrial accidents from the Multi-attribute Technological Accidents Dataset (MATA-D) created by Moura et al. Understanding this complex and high dimensional data on incidents, is the main purpose of this work. We apply association rule mining techniques and perform point-failure analysis in order to produce further insight into the dataset. Subsequently, key similarities among accidents’ contributing factors will be analysed, in order to disclose relevant associations and identify to which extent a limited number of driving forces might be generating undesirable events. Results will be regarded as additional indicators to reduce risky interfaces among contributing factors, and to indicate further managerial actions to minimise accidents. Conclusions to enable additional means to visualise and communicate risks to specific stakeholders are then discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DOELL, Christoph, Pascal HELD, Raphael MOURA, Rudolf KRUSE, Michael BEER, 2015. Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces. 13th International Probabilistic Workshop (IPW 2015). Liverpool, UK, 4. Nov. 2015 - 6. Nov. 2015. In: PATELLI, Edoardo, ed., Ioannis KOUGIOUMTZOGLOU, ed.. Proceedings of the 13th International Probabilistic Workshop (IPW 2015). Singapur: Research Publishing, 2015, pp. 218-230. ISBN 978-981-09-7963-8. Available under: doi: 10.3850/978-981-09-7963-8092BibTex
@inproceedings{Doell2015Analy-44704, year={2015}, doi={10.3850/978-981-09-7963-8092}, title={Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces}, url={http://rpsonline.com.sg/rps2prod/ipw2015/html/092.xml}, isbn={978-981-09-7963-8}, publisher={Research Publishing}, address={Singapur}, booktitle={Proceedings of the 13th International Probabilistic Workshop (IPW 2015)}, pages={218--230}, editor={Patelli, Edoardo and Kougioumtzoglou, Ioannis}, author={Doell, Christoph and Held, Pascal and Moura, Raphael and Kruse, Rudolf and Beer, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44704"> <dc:contributor>Held, Pascal</dc:contributor> <dc:creator>Beer, Michael</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44704"/> <dc:creator>Kruse, Rudolf</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kruse, Rudolf</dc:contributor> <dc:creator>Moura, Raphael</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Major accidents may cause severe damage to humans and the environment, and can potentially lead to significant losses in a business and societal level. Thus, the understanding of these complex multi-attribute events through the analysis of past accidents might assist the search for strategies to improve engineering system’s safety and design robustness. Therefore, we aim to explore potential relationships among contributing factors by means of assessing approximately 200 major industrial accidents from the Multi-attribute Technological Accidents Dataset (MATA-D) created by Moura et al. Understanding this complex and high dimensional data on incidents, is the main purpose of this work. We apply association rule mining techniques and perform point-failure analysis in order to produce further insight into the dataset. Subsequently, key similarities among accidents’ contributing factors will be analysed, in order to disclose relevant associations and identify to which extent a limited number of driving forces might be generating undesirable events. Results will be regarded as additional indicators to reduce risky interfaces among contributing factors, and to indicate further managerial actions to minimise accidents. Conclusions to enable additional means to visualise and communicate risks to specific stakeholders are then discussed.</dcterms:abstract> <dcterms:issued>2015</dcterms:issued> <dc:contributor>Beer, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T16:54:17Z</dcterms:available> <dc:creator>Doell, Christoph</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Moura, Raphael</dc:contributor> <dc:contributor>Doell, Christoph</dc:contributor> <dcterms:title>Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces</dcterms:title> <dc:creator>Held, Pascal</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T16:54:17Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>