Publikation:

Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Held, Pascal
Moura, Raphael
Kruse, Rudolf
Beer, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

PATELLI, Edoardo, ed., Ioannis KOUGIOUMTZOGLOU, ed.. Proceedings of the 13th International Probabilistic Workshop (IPW 2015). Singapur: Research Publishing, 2015, pp. 218-230. ISBN 978-981-09-7963-8. Available under: doi: 10.3850/978-981-09-7963-8092

Zusammenfassung

Major accidents may cause severe damage to humans and the environment, and can potentially lead to significant losses in a business and societal level. Thus, the understanding of these complex multi-attribute events through the analysis of past accidents might assist the search for strategies to improve engineering system’s safety and design robustness. Therefore, we aim to explore potential relationships among contributing factors by means of assessing approximately 200 major industrial accidents from the Multi-attribute Technological Accidents Dataset (MATA-D) created by Moura et al. Understanding this complex and high dimensional data on incidents, is the main purpose of this work. We apply association rule mining techniques and perform point-failure analysis in order to produce further insight into the dataset. Subsequently, key similarities among accidents’ contributing factors will be analysed, in order to disclose relevant associations and identify to which extent a limited number of driving forces might be generating undesirable events. Results will be regarded as additional indicators to reduce risky interfaces among contributing factors, and to indicate further managerial actions to minimise accidents. Conclusions to enable additional means to visualise and communicate risks to specific stakeholders are then discussed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Association Rule Mining, MATA-D, Major accidents, Binary data

Konferenz

13th International Probabilistic Workshop (IPW 2015), 4. Nov. 2015 - 6. Nov. 2015, Liverpool, UK
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DOELL, Christoph, Pascal HELD, Raphael MOURA, Rudolf KRUSE, Michael BEER, 2015. Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces. 13th International Probabilistic Workshop (IPW 2015). Liverpool, UK, 4. Nov. 2015 - 6. Nov. 2015. In: PATELLI, Edoardo, ed., Ioannis KOUGIOUMTZOGLOU, ed.. Proceedings of the 13th International Probabilistic Workshop (IPW 2015). Singapur: Research Publishing, 2015, pp. 218-230. ISBN 978-981-09-7963-8. Available under: doi: 10.3850/978-981-09-7963-8092
BibTex
@inproceedings{Doell2015Analy-44704,
  year={2015},
  doi={10.3850/978-981-09-7963-8092},
  title={Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces},
  url={http://rpsonline.com.sg/rps2prod/ipw2015/html/092.xml},
  isbn={978-981-09-7963-8},
  publisher={Research Publishing},
  address={Singapur},
  booktitle={Proceedings of the 13th International Probabilistic Workshop (IPW 2015)},
  pages={218--230},
  editor={Patelli, Edoardo and Kougioumtzoglou, Ioannis},
  author={Doell, Christoph and Held, Pascal and Moura, Raphael and Kruse, Rudolf and Beer, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44704">
    <dc:contributor>Held, Pascal</dc:contributor>
    <dc:creator>Beer, Michael</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44704"/>
    <dc:creator>Kruse, Rudolf</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kruse, Rudolf</dc:contributor>
    <dc:creator>Moura, Raphael</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Major accidents may cause severe damage to humans and the environment, and can potentially lead to significant losses in a business and societal level. Thus, the understanding of these complex multi-attribute events through the analysis of past accidents might assist the search for strategies to improve engineering system’s safety and design robustness. Therefore, we aim to explore potential relationships among contributing factors by means of assessing approximately 200 major industrial accidents from the Multi-attribute Technological Accidents Dataset (MATA-D) created by Moura et al. Understanding this complex and high dimensional data on incidents, is the main purpose of this work. We apply association rule mining techniques and perform point-failure analysis in order to produce further insight into the dataset. Subsequently, key similarities among accidents’ contributing factors will be analysed, in order to disclose relevant associations and identify to which extent a limited number of driving forces might be generating undesirable events. Results will be regarded as additional indicators to reduce risky interfaces among contributing factors, and to indicate further managerial actions to minimise accidents. Conclusions to enable additional means to visualise and communicate risks to specific stakeholders are then discussed.</dcterms:abstract>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Beer, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T16:54:17Z</dcterms:available>
    <dc:creator>Doell, Christoph</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Moura, Raphael</dc:contributor>
    <dc:contributor>Doell, Christoph</dc:contributor>
    <dcterms:title>Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces</dcterms:title>
    <dc:creator>Held, Pascal</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T16:54:17Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-01-07

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen