Publikation: Coracle : a Machine Learning Framework to Identify Bacteria Associated with Continuous Variables
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present Coracle, an Artificial Intelligence (AI) framework that can identify associations between bacterial communities and continuous variables. Coracle uses an ensemble approach of prominent feature selection methods and machine learning (ML) models to identify features, i.e., bacteria, associated with a continuous variable, e.g. host thermal tolerance. The results are aggregated into a score that incorporates the performances of the different ML models and the respective feature importance, while also considering the robustness of feature selection. Additionally, regression coefficients provide first insights into the direction of the association. We show the utility of Coracle by analyzing associations between bacterial composition data (i.e., 16S rRNA Amplicon Sequence Variants, ASVs) and coral thermal tolerance (i.e., standardized short-term heat stress-derived diagnostics). This analysis identified high-scoring bacterial taxa that were previously found associated with coral thermal tolerance. Coracle scales with feature number and performs well with hundreds to thousands of features, corresponding to the typical size of current datasets. Coracle performs best if run at a higher taxonomic level first (e.g., order or family) to identify groups of interest that can subsequently be run at the ASV level.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STAAB, Sebastian, Anny CÁRDENAS, Raquel S. PEIXOTO, Falk SCHREIBER, Christian R. VOOLSTRA, 2024. Coracle : a Machine Learning Framework to Identify Bacteria Associated with Continuous Variables. In: Bioinformatics. Oxford University Press (OUP). 2024, 40(1), btad749. ISSN 1367-4803. eISSN 1367-4811. Available under: doi: 10.1093/bioinformatics/btad749BibTex
@article{Staab2024Corac-68931, year={2024}, doi={10.1093/bioinformatics/btad749}, title={Coracle : a Machine Learning Framework to Identify Bacteria Associated with Continuous Variables}, number={1}, volume={40}, issn={1367-4803}, journal={Bioinformatics}, author={Staab, Sebastian and Cárdenas, Anny and Peixoto, Raquel S. and Schreiber, Falk and Voolstra, Christian R.}, note={Article Number: btad749} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68931"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract>We present Coracle, an Artificial Intelligence (AI) framework that can identify associations between bacterial communities and continuous variables. Coracle uses an ensemble approach of prominent feature selection methods and machine learning (ML) models to identify features, i.e., bacteria, associated with a continuous variable, e.g. host thermal tolerance. The results are aggregated into a score that incorporates the performances of the different ML models and the respective feature importance, while also considering the robustness of feature selection. Additionally, regression coefficients provide first insights into the direction of the association. We show the utility of Coracle by analyzing associations between bacterial composition data (i.e., 16S rRNA Amplicon Sequence Variants, ASVs) and coral thermal tolerance (i.e., standardized short-term heat stress-derived diagnostics). This analysis identified high-scoring bacterial taxa that were previously found associated with coral thermal tolerance. Coracle scales with feature number and performs well with hundreds to thousands of features, corresponding to the typical size of current datasets. Coracle performs best if run at a higher taxonomic level first (e.g., order or family) to identify groups of interest that can subsequently be run at the ASV level.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68931"/> <dcterms:issued>2024</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Voolstra, Christian R.</dc:contributor> <dcterms:title>Coracle : a Machine Learning Framework to Identify Bacteria Associated with Continuous Variables</dcterms:title> <dc:creator>Staab, Sebastian</dc:creator> <dc:creator>Peixoto, Raquel S.</dc:creator> <dc:contributor>Staab, Sebastian</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Peixoto, Raquel S.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-04T13:17:46Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-04T13:17:46Z</dc:date> <dc:contributor>Schreiber, Falk</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Cárdenas, Anny</dc:creator> <dc:language>eng</dc:language> <dc:creator>Voolstra, Christian R.</dc:creator> <dc:creator>Schreiber, Falk</dc:creator> <dc:contributor>Cárdenas, Anny</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68931/1/staab_2-1qjmi1jk397fx9.PDF"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68931/1/staab_2-1qjmi1jk397fx9.PDF"/> </rdf:Description> </rdf:RDF>