Publikation:

Stability of hyperbolic space under Ricci flow

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Schulze, Felix
Simon, Miles

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Communications in analysis and geometry. 2011, 19(5), pp. 1023-1047. Available under: doi: 10.4310/CAG.2011.v19.n5.a8

Zusammenfassung

We study the Ricci flow of initial metrics which are C0-perturbations of the hyperbolic metric on Hn[Hyperbolic n-space]. If the perturbation is bounded in the L2-sense, and small enough in the C0-sense, then we show the following: In dimensions four and higher, the scaled Ricci harmonic map heat flow of such a metric converges smoothly, uniformly and exponentially fast in all Ck-norms and in the L2-norm to the hyperbolic metric as time approaches infinity. We also prove a related result for the Ricci flow and for the two-dimensional conformal Ricci flow.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHNÜRER, Oliver C., Felix SCHULZE, Miles SIMON, 2011. Stability of hyperbolic space under Ricci flow. In: Communications in analysis and geometry. 2011, 19(5), pp. 1023-1047. Available under: doi: 10.4310/CAG.2011.v19.n5.a8
BibTex
@article{Schnurer2011Stabi-19316,
  year={2011},
  doi={10.4310/CAG.2011.v19.n5.a8},
  title={Stability of hyperbolic space under Ricci flow},
  number={5},
  volume={19},
  journal={Communications in analysis and geometry},
  pages={1023--1047},
  author={Schnürer, Oliver C. and Schulze, Felix and Simon, Miles}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19316">
    <dc:contributor>Simon, Miles</dc:contributor>
    <dc:creator>Schulze, Felix</dc:creator>
    <dc:creator>Simon, Miles</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <dc:contributor>Schnürer, Oliver C.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19316"/>
    <dcterms:bibliographicCitation>Publ. in: Communications in analysis and geometry ; 19 (2011), 5. - S. 1023-1047</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schulze, Felix</dc:contributor>
    <dcterms:abstract xml:lang="eng">We study the Ricci flow of initial metrics which are C&lt;sup&gt;0&lt;/sup&gt;-perturbations of the hyperbolic metric on H&lt;sup&gt;n&lt;/sup&gt;[Hyperbolic n-space]. If the perturbation is bounded in the L&lt;sup&gt;2&lt;/sup&gt;-sense, and small enough in the C&lt;sup&gt;0&lt;/sup&gt;-sense, then we show the following: In dimensions four and higher, the scaled Ricci harmonic map heat flow of such a metric converges smoothly, uniformly and exponentially fast in all C&lt;sup&gt;k&lt;/sup&gt;-norms and in the L&lt;sup&gt;2&lt;/sup&gt;-norm to the hyperbolic metric as time approaches infinity. We also prove a related result for the Ricci flow and for the two-dimensional conformal Ricci flow.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-13T10:54:11Z</dc:date>
    <dcterms:title>Stability of hyperbolic space under Ricci flow</dcterms:title>
    <dc:creator>Schnürer, Oliver C.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-13T10:54:11Z</dcterms:available>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen