Visual-Interactive Search for Soccer Trajectories to Identify Interesting Game Situations

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
IS&T Electronic Imaging Conference on Visualization and Data Analysis, 2016. 2016
Zusammenfassung

Recently, sports analytics has turned into an important research area of visual analytics and may provide interesting findings, such as the best player of the season, for various kinds of sports. Soccer is a very popular and tactical game, which also attracted great attention in the last few years. However, the search for complex game movements is a very crucial and challenging task. We present a system for searching trajectory data in soccer matches by means of an interactive search interface that enables the user to sketch a situation of interest. Furthermore, we apply a domain specific prefiltering process to extract a set of local movement segments, which are similar to a given sketch. Our approach comprises single-trajectory, multi-trajectory, and event-specific search functions based on two different similarity measures. To demonstrate the usefulness of our approach, we define a domain specific task analysis and conduct a case study together with a domain expert from FC Bayern M¨unchen by investigating a real-world soccer match. Finally, we show that multi-trajectory search in combination with event-specific filtering is needed to describe and retrieve complex moves in soccer matches.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IS&T Electronic Imaging Conference on Visualization and Data Analysis, 2016, 14. Feb. 2016 - 18. Feb. 2016, San Francisco, California
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SHAO, Lin, Dominik SACHA, Benjamin NELDNER, Manuel STEIN, Tobias SCHRECK, 2016. Visual-Interactive Search for Soccer Trajectories to Identify Interesting Game Situations. IS&T Electronic Imaging Conference on Visualization and Data Analysis, 2016. San Francisco, California, 14. Feb. 2016 - 18. Feb. 2016. In: IS&T Electronic Imaging Conference on Visualization and Data Analysis, 2016. 2016
BibTex
@inproceedings{Shao2016Visua-45091,
  year={2016},
  title={Visual-Interactive Search for Soccer Trajectories to Identify Interesting Game Situations},
  url={https://scibib.dbvis.de/publications/view/639},
  booktitle={IS&T Electronic Imaging Conference on Visualization and Data Analysis, 2016},
  author={Shao, Lin and Sacha, Dominik and Neldner, Benjamin and Stein, Manuel and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45091">
    <dc:creator>Sacha, Dominik</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T11:49:31Z</dcterms:available>
    <dc:contributor>Shao, Lin</dc:contributor>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dcterms:title>Visual-Interactive Search for Soccer Trajectories to Identify Interesting Game Situations</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:contributor>Neldner, Benjamin</dc:contributor>
    <dc:creator>Neldner, Benjamin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T11:49:31Z</dc:date>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45091"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:abstract xml:lang="eng">Recently, sports analytics has turned into an important research area of visual analytics and may provide interesting findings, such as the best player of the season, for various kinds of sports. Soccer is a very popular and tactical game, which also attracted great attention in the last few years. However, the search for complex game movements is a very crucial and challenging task. We present a system for searching trajectory data in soccer matches by means of an interactive search interface that enables the user to sketch a situation of interest. Furthermore, we apply a domain specific prefiltering process to extract a set of local movement segments, which are similar to a given sketch. Our approach comprises single-trajectory, multi-trajectory, and event-specific search functions based on two different similarity measures. To demonstrate the usefulness of our approach, we define a domain specific task analysis and conduct a case study together with a domain expert from FC Bayern M¨unchen by investigating a real-world soccer match. Finally, we show that multi-trajectory search in combination with event-specific filtering is needed to describe and retrieve complex moves in soccer matches.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Shao, Lin</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2019-02-19
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen