MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales

Lade...
Vorschaubild
Dateien
Meschenmoser_2-1qnnk751tdpme5.pdf
Meschenmoser_2-1qnnk751tdpme5.pdfGröße: 4.81 MBDownloads: 166
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST), 2020. Piscataway, NJ: IEEE, 2020
Zusammenfassung

Segmenting biologging time series of animals on multiple temporal scales is an essential step that requires complex techniques with careful parameterization and possibly cross-domain expertise. Yet, there is a lack of visual-interactive tools that strongly support such multi-scale segmentation. To close this gap, we present our MultiSegVA platform for interactively defining segmentation techniques and parameters on multiple temporal scales. MultiSegVA primarily contributes tailored, visual-interactive means and visual analytics paradigms for segmenting unlabeled time series on multiple scales. Further, to flexibly compose the multi-scale segmentation, the platform contributes a new visual query language that links a variety of segmentation techniques. To illustrate our approach, we present a domain-oriented set of segmentation techniques derived in collaboration with movement ecologists. We demonstrate the applicability and usefulness of MultiSegVA in two real-world use cases from movement ecology, related to behavior analysis after environment-aware segmentation, and after progressive clustering. Expert feedback from movement ecologists shows the effectiveness of tailored visual-interactive means and visual analytics paradigms at segmenting multi-scale data, enabling them to perform semantically meaningful analyses. A third use case demonstrates that MultiSegVA is generalizable to other domains.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE Conference on Visual Analytics Science and Technology (VAST) (Virtual Conference) 2020, 25. Okt. 2020 - 30. Okt. 2020
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MESCHENMOSER, Philipp, Juri F. BUCHMÜLLER, Daniel SEEBACHER, Martin WIKELSKI, Daniel A. KEIM, 2020. MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales. IEEE Conference on Visual Analytics Science and Technology (VAST) (Virtual Conference) 2020, 25. Okt. 2020 - 30. Okt. 2020. In: Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST), 2020. Piscataway, NJ: IEEE, 2020
BibTex
@inproceedings{Meschenmoser2020Multi-51034,
  year={2020},
  title={MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST), 2020},
  author={Meschenmoser, Philipp and Buchmüller, Juri F. and Seebacher, Daniel and Wikelski, Martin and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51034">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-25T08:56:39Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <dc:creator>Wikelski, Martin</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51034/1/Meschenmoser_2-1qnnk751tdpme5.pdf"/>
    <dc:creator>Meschenmoser, Philipp</dc:creator>
    <dc:contributor>Meschenmoser, Philipp</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51034/1/Meschenmoser_2-1qnnk751tdpme5.pdf"/>
    <dc:contributor>Wikelski, Martin</dc:contributor>
    <dcterms:abstract xml:lang="eng">Segmenting biologging time series of animals on multiple temporal scales is an essential step that requires complex techniques with careful parameterization and possibly cross-domain expertise. Yet, there is a lack of visual-interactive tools that strongly support such multi-scale segmentation. To close this gap, we present our MultiSegVA platform for interactively defining segmentation techniques and parameters on multiple temporal scales. MultiSegVA primarily contributes tailored, visual-interactive means and visual analytics paradigms for segmenting unlabeled time series on multiple scales. Further, to flexibly compose the multi-scale segmentation, the platform contributes a new visual query language that links a variety of segmentation techniques. To illustrate our approach, we present a domain-oriented set of segmentation techniques derived in collaboration with movement ecologists. We demonstrate the applicability and usefulness of MultiSegVA in two real-world use cases from movement ecology, related to behavior analysis after environment-aware segmentation, and after progressive clustering. Expert feedback from movement ecologists shows the effectiveness of tailored visual-interactive means and visual analytics paradigms at segmenting multi-scale data, enabling them to perform semantically meaningful analyses. A third use case demonstrates that MultiSegVA is generalizable to other domains.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-25T08:56:39Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51034"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet