Publikation:

Progress on partial edge drawings

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Bruckdorfer, Till
Gutwenger, Carsten
Kaufmann, Michael
Montecchiani, Fabrizio
Martin, Nöllenburg,
Wolff, Alexander

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

DIDIMO, Walter, ed., Maurizio PATRIGNANI, ed.. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 67-78. Lecture Notes in Computer Science. 7704. ISBN 978-3-642-36762-5. Available under: doi: 10.1007/978-3-642-36763-2_7

Zusammenfassung

Recently, a new way of avoiding crossings in straight-line drawings of non-planar graphs has been investigated. The idea of partial edge drawings (PED) is to drop the middle part of edges and rely on the remaining edge parts called stubs. We focus on a symmetric model (SPED) that requires the two stubs of an edge to be of equal length. In this way, the stub at the other endpoint of an edge assures the viewer of the edge’s existence. We also consider an additional homogeneity constraint that forces the stub lengths to be a given fraction δ of the edge lengths (δ-SHPED). Given length and direction of a stub, this model helps to infer the position of the opposite stub.


We show that, for a fixed stub–edge length ratio δ, not all graphs have a δ-SHPED. Specifically, we show that K 241 does not have a 1/4-SHPED, while bandwidth-k graphs always have a Θ(1/k√) -SHPED. We also give bounds for complete bipartite graphs. Further, we consider the problem MaxSPED where the task is to compute the SPED of maximum total stub length that a given straight-line drawing contains. We present an efficient solution for 2-planar drawings and a 2-approximation algorithm for the dual problem.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRUCKDORFER, Till, Sabine CORNELSEN, Carsten GUTWENGER, Michael KAUFMANN, Fabrizio MONTECCHIANI, Nöllenburg MARTIN, Alexander WOLFF, 2013. Progress on partial edge drawings. In: DIDIMO, Walter, ed., Maurizio PATRIGNANI, ed.. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 67-78. Lecture Notes in Computer Science. 7704. ISBN 978-3-642-36762-5. Available under: doi: 10.1007/978-3-642-36763-2_7
BibTex
@inproceedings{Bruckdorfer2013Progr-26479,
  year={2013},
  doi={10.1007/978-3-642-36763-2_7},
  title={Progress on partial edge drawings},
  number={7704},
  isbn={978-3-642-36762-5},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={Graph Drawing},
  pages={67--78},
  editor={Didimo, Walter and Patrignani, Maurizio},
  author={Bruckdorfer, Till and Cornelsen, Sabine and Gutwenger, Carsten and Kaufmann, Michael and Montecchiani, Fabrizio and Martin, Nöllenburg, and Wolff, Alexander}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26479">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>Graph Drawing : 20th International Symposium, GD 2012, Redmond, WA, USA, September 19-21, 2012 ; Revised Selected Papers / Walter Didimo and Maurizio Patrignani (eds.). - Berlin [u.a.] : Springer, 2013. - S. 67-78. - (Lecture notes in computer science ; 7704). - ISBN 978-3-642-36762-5</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Bruckdorfer, Till</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T09:26:18Z</dcterms:available>
    <dc:creator>Bruckdorfer, Till</dc:creator>
    <dc:creator>Montecchiani, Fabrizio</dc:creator>
    <dc:creator>Gutwenger, Carsten</dc:creator>
    <dc:creator>Kaufmann, Michael</dc:creator>
    <dc:contributor>Montecchiani, Fabrizio</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Wolff, Alexander</dc:contributor>
    <dc:contributor>Gutwenger, Carsten</dc:contributor>
    <dc:creator>Cornelsen, Sabine</dc:creator>
    <dc:contributor>Cornelsen, Sabine</dc:contributor>
    <dc:contributor>Martin, Nöllenburg,</dc:contributor>
    <dc:creator>Wolff, Alexander</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26479"/>
    <dcterms:abstract xml:lang="eng">Recently, a new way of avoiding crossings in straight-line drawings of non-planar graphs has been investigated. The idea of partial edge drawings (PED) is to drop the middle part of edges and rely on the remaining edge parts called stubs. We focus on a symmetric model (SPED) that requires the two stubs of an edge to be of equal length. In this way, the stub at the other endpoint of an edge assures the viewer of the edge’s existence. We also consider an additional homogeneity constraint that forces the stub lengths to be a given fraction δ of the edge lengths (δ-SHPED). Given length and direction of a stub, this model helps to infer the position of the opposite stub.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;We show that, for a fixed stub–edge length ratio δ, not all graphs have a δ-SHPED. Specifically, we show that K &lt;sub&gt;241&lt;/sub&gt; does not have a 1/4-SHPED, while bandwidth-k graphs always have a Θ(1/k√) -SHPED. We also give bounds for complete bipartite graphs. Further, we consider the problem MaxSPED where the task is to compute the SPED of maximum total stub length that a given straight-line drawing contains. We present an efficient solution for 2-planar drawings and a 2-approximation algorithm for the dual problem.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Martin, Nöllenburg,</dc:creator>
    <dc:contributor>Kaufmann, Michael</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T09:26:18Z</dc:date>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:title>Progress on partial edge drawings</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen