Publikation:

Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACS applied materials & interfaces. 2018, 10(49), pp. 42542-42551. ISSN 1944-8244. eISSN 1944-8252. Available under: doi: 10.1021/acsami.8b18200

Zusammenfassung

Solar cells based on organic-inorganic halide perovskites are now leading the photovoltaic technologies because of their high power conversion efficiency. Recently, there have been debates on the microstructure-related defects in metal halide perovskites (grain size, grain boundaries, etc.) and a widespread view is that large grains are a prerequisite to suppress nonradiative recombination and improve photovoltaic performance, although opinions against it also exist. Herein, we employ blends of methylammonium lead iodide perovskites with an insulating polymer (polyvinylpyrrolidone) that offer the possibility to tune the grain size in order to obtain a fundamental understanding of the photoresponse at the microscopic level. We provide, for the first time, spatially resolved details of the microstructures in such blend systems via Raman mapping, light beam-induced current imaging, and conductive atomic force microscopy. Although the polymer blend systems systematically alter the morphology by creating small grains (more grain boundaries), they reduce nonradiative recombination within the film and enhance its spatial homogeneity of radiative recombination. We attribute this to a reduction in the density of bulk trap states, as evidenced by an order of magnitude higher photoluminescence intensity and a significantly higher open-circuit voltage when the polymer is incorporated into the perovskite films. The solar cells employing blend systems also show nearly hysteresis-free power conversion efficiency ∼17.5%, as well as a remarkable shelf-life stability over 100 days.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

defects in perovskites; grain boundaries and defects; non-radiative recombination; polymer scaffolds for perovskites; spatially resolved characterizations of perovskites

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FAKHARUDDIN, Azhar, Michael SEYBOLD, Antonio AGRESTI, Sara PESCETELLI, Fabio MATTEOCCI, Muhammad Irfan HAIDER, Susanne T. BIRKHOLD, Hao HU, Muhammad SULTAN, Lukas SCHMIDT-MENDE, 2018. Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. In: ACS applied materials & interfaces. 2018, 10(49), pp. 42542-42551. ISSN 1944-8244. eISSN 1944-8252. Available under: doi: 10.1021/acsami.8b18200
BibTex
@article{Fakharuddin2018-11-29Perov-44813,
  year={2018},
  doi={10.1021/acsami.8b18200},
  title={Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells},
  number={49},
  volume={10},
  issn={1944-8244},
  journal={ACS applied materials & interfaces},
  pages={42542--42551},
  author={Fakharuddin, Azhar and Seybold, Michael and Agresti, Antonio and Pescetelli, Sara and Matteocci, Fabio and Haider, Muhammad Irfan and Birkhold, Susanne T. and Hu, Hao and Sultan, Muhammad and Schmidt-Mende, Lukas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44813">
    <dc:creator>Agresti, Antonio</dc:creator>
    <dc:contributor>Sultan, Muhammad</dc:contributor>
    <dcterms:title>Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells</dcterms:title>
    <dc:contributor>Seybold, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schmidt-Mende, Lukas</dc:creator>
    <dc:creator>Haider, Muhammad Irfan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2018-11-29</dcterms:issued>
    <dc:creator>Fakharuddin, Azhar</dc:creator>
    <dc:contributor>Agresti, Antonio</dc:contributor>
    <dc:contributor>Haider, Muhammad Irfan</dc:contributor>
    <dc:creator>Matteocci, Fabio</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T08:49:47Z</dc:date>
    <dc:contributor>Birkhold, Susanne T.</dc:contributor>
    <dc:creator>Hu, Hao</dc:creator>
    <dc:creator>Birkhold, Susanne T.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Hu, Hao</dc:contributor>
    <dc:contributor>Schmidt-Mende, Lukas</dc:contributor>
    <dc:contributor>Matteocci, Fabio</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Pescetelli, Sara</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44813"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Seybold, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T08:49:47Z</dcterms:available>
    <dc:creator>Pescetelli, Sara</dc:creator>
    <dc:contributor>Fakharuddin, Azhar</dc:contributor>
    <dc:creator>Sultan, Muhammad</dc:creator>
    <dcterms:abstract xml:lang="eng">Solar cells based on organic-inorganic halide perovskites are now leading the photovoltaic technologies because of their high power conversion efficiency. Recently, there have been debates on the microstructure-related defects in metal halide perovskites (grain size, grain boundaries, etc.) and a widespread view is that large grains are a prerequisite to suppress nonradiative recombination and improve photovoltaic performance, although opinions against it also exist. Herein, we employ blends of methylammonium lead iodide perovskites with an insulating polymer (polyvinylpyrrolidone) that offer the possibility to tune the grain size in order to obtain a fundamental understanding of the photoresponse at the microscopic level. We provide, for the first time, spatially resolved details of the microstructures in such blend systems via Raman mapping, light beam-induced current imaging, and conductive atomic force microscopy. Although the polymer blend systems systematically alter the morphology by creating small grains (more grain boundaries), they reduce nonradiative recombination within the film and enhance its spatial homogeneity of radiative recombination. We attribute this to a reduction in the density of bulk trap states, as evidenced by an order of magnitude higher photoluminescence intensity and a significantly higher open-circuit voltage when the polymer is incorporated into the perovskite films. The solar cells employing blend systems also show nearly hysteresis-free power conversion efficiency ∼17.5%, as well as a remarkable shelf-life stability over 100 days.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen