Publikation: Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Solar cells based on organic-inorganic halide perovskites are now leading the photovoltaic technologies because of their high power conversion efficiency. Recently, there have been debates on the microstructure-related defects in metal halide perovskites (grain size, grain boundaries, etc.) and a widespread view is that large grains are a prerequisite to suppress nonradiative recombination and improve photovoltaic performance, although opinions against it also exist. Herein, we employ blends of methylammonium lead iodide perovskites with an insulating polymer (polyvinylpyrrolidone) that offer the possibility to tune the grain size in order to obtain a fundamental understanding of the photoresponse at the microscopic level. We provide, for the first time, spatially resolved details of the microstructures in such blend systems via Raman mapping, light beam-induced current imaging, and conductive atomic force microscopy. Although the polymer blend systems systematically alter the morphology by creating small grains (more grain boundaries), they reduce nonradiative recombination within the film and enhance its spatial homogeneity of radiative recombination. We attribute this to a reduction in the density of bulk trap states, as evidenced by an order of magnitude higher photoluminescence intensity and a significantly higher open-circuit voltage when the polymer is incorporated into the perovskite films. The solar cells employing blend systems also show nearly hysteresis-free power conversion efficiency ∼17.5%, as well as a remarkable shelf-life stability over 100 days.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FAKHARUDDIN, Azhar, Michael SEYBOLD, Antonio AGRESTI, Sara PESCETELLI, Fabio MATTEOCCI, Muhammad Irfan HAIDER, Susanne T. BIRKHOLD, Hao HU, Muhammad SULTAN, Lukas SCHMIDT-MENDE, 2018. Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. In: ACS applied materials & interfaces. 2018, 10(49), pp. 42542-42551. ISSN 1944-8244. eISSN 1944-8252. Available under: doi: 10.1021/acsami.8b18200BibTex
@article{Fakharuddin2018-11-29Perov-44813, year={2018}, doi={10.1021/acsami.8b18200}, title={Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells}, number={49}, volume={10}, issn={1944-8244}, journal={ACS applied materials & interfaces}, pages={42542--42551}, author={Fakharuddin, Azhar and Seybold, Michael and Agresti, Antonio and Pescetelli, Sara and Matteocci, Fabio and Haider, Muhammad Irfan and Birkhold, Susanne T. and Hu, Hao and Sultan, Muhammad and Schmidt-Mende, Lukas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44813"> <dc:creator>Agresti, Antonio</dc:creator> <dc:contributor>Sultan, Muhammad</dc:contributor> <dcterms:title>Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells</dcterms:title> <dc:contributor>Seybold, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Schmidt-Mende, Lukas</dc:creator> <dc:creator>Haider, Muhammad Irfan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018-11-29</dcterms:issued> <dc:creator>Fakharuddin, Azhar</dc:creator> <dc:contributor>Agresti, Antonio</dc:contributor> <dc:contributor>Haider, Muhammad Irfan</dc:contributor> <dc:creator>Matteocci, Fabio</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T08:49:47Z</dc:date> <dc:contributor>Birkhold, Susanne T.</dc:contributor> <dc:creator>Hu, Hao</dc:creator> <dc:creator>Birkhold, Susanne T.</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Hu, Hao</dc:contributor> <dc:contributor>Schmidt-Mende, Lukas</dc:contributor> <dc:contributor>Matteocci, Fabio</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Pescetelli, Sara</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44813"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Seybold, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T08:49:47Z</dcterms:available> <dc:creator>Pescetelli, Sara</dc:creator> <dc:contributor>Fakharuddin, Azhar</dc:contributor> <dc:creator>Sultan, Muhammad</dc:creator> <dcterms:abstract xml:lang="eng">Solar cells based on organic-inorganic halide perovskites are now leading the photovoltaic technologies because of their high power conversion efficiency. Recently, there have been debates on the microstructure-related defects in metal halide perovskites (grain size, grain boundaries, etc.) and a widespread view is that large grains are a prerequisite to suppress nonradiative recombination and improve photovoltaic performance, although opinions against it also exist. Herein, we employ blends of methylammonium lead iodide perovskites with an insulating polymer (polyvinylpyrrolidone) that offer the possibility to tune the grain size in order to obtain a fundamental understanding of the photoresponse at the microscopic level. We provide, for the first time, spatially resolved details of the microstructures in such blend systems via Raman mapping, light beam-induced current imaging, and conductive atomic force microscopy. Although the polymer blend systems systematically alter the morphology by creating small grains (more grain boundaries), they reduce nonradiative recombination within the film and enhance its spatial homogeneity of radiative recombination. We attribute this to a reduction in the density of bulk trap states, as evidenced by an order of magnitude higher photoluminescence intensity and a significantly higher open-circuit voltage when the polymer is incorporated into the perovskite films. The solar cells employing blend systems also show nearly hysteresis-free power conversion efficiency ∼17.5%, as well as a remarkable shelf-life stability over 100 days.</dcterms:abstract> </rdf:Description> </rdf:RDF>