StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
GRIBAUDO, Marco, ed., David N. JANSEN, ed., Anne REMKE, ed.. Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings. Cham: Springer, 2020, pp. 27-32. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-59853-2. Available under: doi: 10.1007/978-3-030-59854-9_4
Zusammenfassung

We present a toolbox for stochastic simulations with CRN models and their (automated) deep abstractions: a mixture density deep neural network trained on time-series data produced by the CRN. The optimal neural network architecture is learnt along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. The tool was primarily designed to efficiently reproduce simulation traces of given complex stochastic reaction networks arising in systems biology research, possibly with multi-modal emergent phenotypes. It is at the same time applicable to any other application domain, where time-series measurements of a Markovian stochastic process are available by experiment or synthesised with simulation (e.g. are obtained from a rule-based description of the CRN).

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
17th International Conference, QEST 2020, 31. Aug. 2020 - 3. Sep. 2020, Wien
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690REPIN, Denis, Nhat-Huy PHUNG, Tatjana PETROV, 2020. StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks. 17th International Conference, QEST 2020. Wien, 31. Aug. 2020 - 3. Sep. 2020. In: GRIBAUDO, Marco, ed., David N. JANSEN, ed., Anne REMKE, ed.. Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings. Cham: Springer, 2020, pp. 27-32. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-59853-2. Available under: doi: 10.1007/978-3-030-59854-9_4
BibTex
@inproceedings{Repin2020Stoch-51770,
  year={2020},
  doi={10.1007/978-3-030-59854-9_4},
  title={StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks},
  number={12289},
  isbn={978-3-030-59853-2},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings},
  pages={27--32},
  editor={Gribaudo, Marco and Jansen, David N. and Remke, Anne},
  author={Repin, Denis and Phung, Nhat-Huy and Petrov, Tatjana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51770">
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dcterms:title>StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks</dcterms:title>
    <dcterms:issued>2020</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Phung, Nhat-Huy</dc:creator>
    <dc:contributor>Repin, Denis</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51770"/>
    <dc:creator>Repin, Denis</dc:creator>
    <dc:contributor>Phung, Nhat-Huy</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T10:30:45Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T10:30:45Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We present a toolbox for stochastic simulations with CRN models and their (automated) deep abstractions: a mixture density deep neural network trained on time-series data produced by the CRN. The optimal neural network architecture is learnt along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. The tool was primarily designed to efficiently reproduce simulation traces of given complex stochastic reaction networks arising in systems biology research, possibly with multi-modal emergent phenotypes. It is at the same time applicable to any other application domain, where time-series measurements of a Markovian stochastic process are available by experiment or synthesised with simulation (e.g. are obtained from a rule-based description of the CRN).</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet