Publikation: StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a toolbox for stochastic simulations with CRN models and their (automated) deep abstractions: a mixture density deep neural network trained on time-series data produced by the CRN. The optimal neural network architecture is learnt along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. The tool was primarily designed to efficiently reproduce simulation traces of given complex stochastic reaction networks arising in systems biology research, possibly with multi-modal emergent phenotypes. It is at the same time applicable to any other application domain, where time-series measurements of a Markovian stochastic process are available by experiment or synthesised with simulation (e.g. are obtained from a rule-based description of the CRN).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
REPIN, Denis, Nhat-Huy PHUNG, Tatjana PETROV, 2020. StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks. 17th International Conference, QEST 2020. Wien, 31. Aug. 2020 - 3. Sept. 2020. In: GRIBAUDO, Marco, ed., David N. JANSEN, ed., Anne REMKE, ed.. Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings. Cham: Springer, 2020, pp. 27-32. Lecture Notes in Computer Science. 12289. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-59853-2. Available under: doi: 10.1007/978-3-030-59854-9_4BibTex
@inproceedings{Repin2020Stoch-51770, year={2020}, doi={10.1007/978-3-030-59854-9_4}, title={StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks}, number={12289}, isbn={978-3-030-59853-2}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings}, pages={27--32}, editor={Gribaudo, Marco and Jansen, David N. and Remke, Anne}, author={Repin, Denis and Phung, Nhat-Huy and Petrov, Tatjana} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51770"> <dc:creator>Petrov, Tatjana</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Petrov, Tatjana</dc:contributor> <dcterms:title>StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks</dcterms:title> <dcterms:issued>2020</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Phung, Nhat-Huy</dc:creator> <dc:contributor>Repin, Denis</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51770"/> <dc:creator>Repin, Denis</dc:creator> <dc:contributor>Phung, Nhat-Huy</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T10:30:45Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T10:30:45Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We present a toolbox for stochastic simulations with CRN models and their (automated) deep abstractions: a mixture density deep neural network trained on time-series data produced by the CRN. The optimal neural network architecture is learnt along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. The tool was primarily designed to efficiently reproduce simulation traces of given complex stochastic reaction networks arising in systems biology research, possibly with multi-modal emergent phenotypes. It is at the same time applicable to any other application domain, where time-series measurements of a Markovian stochastic process are available by experiment or synthesised with simulation (e.g. are obtained from a rule-based description of the CRN).</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>