Publikation:

StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GRIBAUDO, Marco, ed., David N. JANSEN, ed., Anne REMKE, ed.. Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings. Cham: Springer, 2020, pp. 27-32. Lecture Notes in Computer Science. 12289. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-59853-2. Available under: doi: 10.1007/978-3-030-59854-9_4

Zusammenfassung

We present a toolbox for stochastic simulations with CRN models and their (automated) deep abstractions: a mixture density deep neural network trained on time-series data produced by the CRN. The optimal neural network architecture is learnt along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. The tool was primarily designed to efficiently reproduce simulation traces of given complex stochastic reaction networks arising in systems biology research, possibly with multi-modal emergent phenotypes. It is at the same time applicable to any other application domain, where time-series measurements of a Markovian stochastic process are available by experiment or synthesised with simulation (e.g. are obtained from a rule-based description of the CRN).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

17th International Conference, QEST 2020, 31. Aug. 2020 - 3. Sept. 2020, Wien
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690REPIN, Denis, Nhat-Huy PHUNG, Tatjana PETROV, 2020. StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks. 17th International Conference, QEST 2020. Wien, 31. Aug. 2020 - 3. Sept. 2020. In: GRIBAUDO, Marco, ed., David N. JANSEN, ed., Anne REMKE, ed.. Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings. Cham: Springer, 2020, pp. 27-32. Lecture Notes in Computer Science. 12289. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-59853-2. Available under: doi: 10.1007/978-3-030-59854-9_4
BibTex
@inproceedings{Repin2020Stoch-51770,
  year={2020},
  doi={10.1007/978-3-030-59854-9_4},
  title={StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks},
  number={12289},
  isbn={978-3-030-59853-2},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings},
  pages={27--32},
  editor={Gribaudo, Marco and Jansen, David N. and Remke, Anne},
  author={Repin, Denis and Phung, Nhat-Huy and Petrov, Tatjana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51770">
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dcterms:title>StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks</dcterms:title>
    <dcterms:issued>2020</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Phung, Nhat-Huy</dc:creator>
    <dc:contributor>Repin, Denis</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51770"/>
    <dc:creator>Repin, Denis</dc:creator>
    <dc:contributor>Phung, Nhat-Huy</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T10:30:45Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T10:30:45Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We present a toolbox for stochastic simulations with CRN models and their (automated) deep abstractions: a mixture density deep neural network trained on time-series data produced by the CRN. The optimal neural network architecture is learnt along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. The tool was primarily designed to efficiently reproduce simulation traces of given complex stochastic reaction networks arising in systems biology research, possibly with multi-modal emergent phenotypes. It is at the same time applicable to any other application domain, where time-series measurements of a Markovian stochastic process are available by experiment or synthesised with simulation (e.g. are obtained from a rule-based description of the CRN).</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen