Publikation: Attraction and avoidance detection from movements
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
With the development of positioning technology, movement data has become widely available nowadays. An important task in movement data analysis is to mine the relationships among moving objects based on their spatiotemporal interactions. Among all relationship types, attraction and avoidance are arguably the most natural ones. However, rather surprisingly, there is no existing method that addresses the problem of mining significant attraction and avoidance relationships in a well-defined and unified framework. In this paper, we propose a novel method to measure the significance value of relationship between any two objects by examining the background model of their movements via permutation test. Since permutation test is computationally expensive, two effective pruning strategies are developed to reduce the computation time. Furthermore, we show how the proposed method can be extended to efficiently answer the classic threshold query: given an object, retrieve all the objects in the database that have relationships, whose significance values are above certain threshold, with the query object. Empirical studies on both synthetic data and real movement data demonstrate the effectiveness and efficiency of our method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LI, Zhenhui, Bolin DING, Fei WU, Tobias Kin Hou LEI, Roland KAYS, Margaret C. CROFOOT, 2013. Attraction and avoidance detection from movements. 39th International Conference on Very Large Data Bases : VLDB Endowment. Trento, Italy, 26. Aug. 2013 - 30. Aug. 2013. In: JAGADISH, H. V., ed., Aoying ZHOU, ed.. Proceedings of the VLDB Endowment. New York, NY, USA: ACM, 2013, pp. 157-168. Proceedings of the VLDB Endowment. 7 (3). ISSN 2150-8097. Available under: doi: 10.14778/2732232.2732235BibTex
@inproceedings{Li2013Attra-47697, year={2013}, doi={10.14778/2732232.2732235}, title={Attraction and avoidance detection from movements}, number={7 (3)}, issn={2150-8097}, publisher={ACM}, address={New York, NY, USA}, series={Proceedings of the VLDB Endowment}, booktitle={Proceedings of the VLDB Endowment}, pages={157--168}, editor={Jagadish, H. V. and Zhou, Aoying}, author={Li, Zhenhui and Ding, Bolin and Wu, Fei and Lei, Tobias Kin Hou and Kays, Roland and Crofoot, Margaret C.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47697"> <dc:contributor>Wu, Fei</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Lei, Tobias Kin Hou</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Lei, Tobias Kin Hou</dc:contributor> <dc:creator>Wu, Fei</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-28T10:28:04Z</dcterms:available> <dc:creator>Ding, Bolin</dc:creator> <dc:creator>Kays, Roland</dc:creator> <dcterms:abstract xml:lang="eng">With the development of positioning technology, movement data has become widely available nowadays. An important task in movement data analysis is to mine the relationships among moving objects based on their spatiotemporal interactions. Among all relationship types, attraction and avoidance are arguably the most natural ones. However, rather surprisingly, there is no existing method that addresses the problem of mining significant attraction and avoidance relationships in a well-defined and unified framework. In this paper, we propose a novel method to measure the significance value of relationship between any two objects by examining the background model of their movements via permutation test. Since permutation test is computationally expensive, two effective pruning strategies are developed to reduce the computation time. Furthermore, we show how the proposed method can be extended to efficiently answer the classic threshold query: given an object, retrieve all the objects in the database that have relationships, whose significance values are above certain threshold, with the query object. Empirical studies on both synthetic data and real movement data demonstrate the effectiveness and efficiency of our method.</dcterms:abstract> <dcterms:title>Attraction and avoidance detection from movements</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Crofoot, Margaret C.</dc:creator> <dc:contributor>Kays, Roland</dc:contributor> <dc:contributor>Crofoot, Margaret C.</dc:contributor> <dc:creator>Li, Zhenhui</dc:creator> <dcterms:issued>2013</dcterms:issued> <dc:contributor>Ding, Bolin</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47697"/> <dc:contributor>Li, Zhenhui</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-28T10:28:04Z</dc:date> </rdf:Description> </rdf:RDF>