Publikation:

Attraction and avoidance detection from movements

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Li, Zhenhui
Ding, Bolin
Wu, Fei
Lei, Tobias Kin Hou
Kays, Roland

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

JAGADISH, H. V., ed., Aoying ZHOU, ed.. Proceedings of the VLDB Endowment. New York, NY, USA: ACM, 2013, pp. 157-168. Proceedings of the VLDB Endowment. 7 (3). ISSN 2150-8097. Available under: doi: 10.14778/2732232.2732235

Zusammenfassung

With the development of positioning technology, movement data has become widely available nowadays. An important task in movement data analysis is to mine the relationships among moving objects based on their spatiotemporal interactions. Among all relationship types, attraction and avoidance are arguably the most natural ones. However, rather surprisingly, there is no existing method that addresses the problem of mining significant attraction and avoidance relationships in a well-defined and unified framework. In this paper, we propose a novel method to measure the significance value of relationship between any two objects by examining the background model of their movements via permutation test. Since permutation test is computationally expensive, two effective pruning strategies are developed to reduce the computation time. Furthermore, we show how the proposed method can be extended to efficiently answer the classic threshold query: given an object, retrieve all the objects in the database that have relationships, whose significance values are above certain threshold, with the query object. Empirical studies on both synthetic data and real movement data demonstrate the effectiveness and efficiency of our method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

39th International Conference on Very Large Data Bases : VLDB Endowment, 26. Aug. 2013 - 30. Aug. 2013, Trento, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LI, Zhenhui, Bolin DING, Fei WU, Tobias Kin Hou LEI, Roland KAYS, Margaret C. CROFOOT, 2013. Attraction and avoidance detection from movements. 39th International Conference on Very Large Data Bases : VLDB Endowment. Trento, Italy, 26. Aug. 2013 - 30. Aug. 2013. In: JAGADISH, H. V., ed., Aoying ZHOU, ed.. Proceedings of the VLDB Endowment. New York, NY, USA: ACM, 2013, pp. 157-168. Proceedings of the VLDB Endowment. 7 (3). ISSN 2150-8097. Available under: doi: 10.14778/2732232.2732235
BibTex
@inproceedings{Li2013Attra-47697,
  year={2013},
  doi={10.14778/2732232.2732235},
  title={Attraction and avoidance detection from movements},
  number={7 (3)},
  issn={2150-8097},
  publisher={ACM},
  address={New York, NY, USA},
  series={Proceedings of the VLDB Endowment},
  booktitle={Proceedings of the VLDB Endowment},
  pages={157--168},
  editor={Jagadish, H. V. and Zhou, Aoying},
  author={Li, Zhenhui and Ding, Bolin and Wu, Fei and Lei, Tobias Kin Hou and Kays, Roland and Crofoot, Margaret C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47697">
    <dc:contributor>Wu, Fei</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lei, Tobias Kin Hou</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Lei, Tobias Kin Hou</dc:contributor>
    <dc:creator>Wu, Fei</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-28T10:28:04Z</dcterms:available>
    <dc:creator>Ding, Bolin</dc:creator>
    <dc:creator>Kays, Roland</dc:creator>
    <dcterms:abstract xml:lang="eng">With the development of positioning technology, movement data has become widely available nowadays. An important task in movement data analysis is to mine the relationships among moving objects based on their spatiotemporal interactions. Among all relationship types, attraction and avoidance are arguably the most natural ones. However, rather surprisingly, there is no existing method that addresses the problem of mining significant attraction and avoidance relationships in a well-defined and unified framework. In this paper, we propose a novel method to measure the significance value of relationship between any two objects by examining the background model of their movements via permutation test. Since permutation test is computationally expensive, two effective pruning strategies are developed to reduce the computation time. Furthermore, we show how the proposed method can be extended to efficiently answer the classic threshold query: given an object, retrieve all the objects in the database that have relationships, whose significance values are above certain threshold, with the query object. Empirical studies on both synthetic data and real movement data demonstrate the effectiveness and efficiency of our method.</dcterms:abstract>
    <dcterms:title>Attraction and avoidance detection from movements</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Crofoot, Margaret C.</dc:creator>
    <dc:contributor>Kays, Roland</dc:contributor>
    <dc:contributor>Crofoot, Margaret C.</dc:contributor>
    <dc:creator>Li, Zhenhui</dc:creator>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Ding, Bolin</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47697"/>
    <dc:contributor>Li, Zhenhui</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-28T10:28:04Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen