Publikation:

High-Dimensional Data Visualization by Interactive Construction of Low-Dimensional Parallel Coordinate Plots

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Itoh, Takayuki
Kumar, Ashnil
Kim, Jinman

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Parallel coordinate plots (PCPs) are among the most useful techniques for the visualization and exploration of high-dimensional data spaces. They are especially useful for the representation of correlations among the dimensions, which identify relationships and interdependencies between variables. However, within these high-dimensional spaces, PCPs face difficulties in displaying the correlation between combinations of dimensions and generally require additional display space as the number of dimensions increases. In this paper, we present a new technique for high-dimensional data visualization in which a set of low-dimensional PCPs are interactively constructed by sampling user-selected subsets of the high-dimensional data space. In our technique, we first construct a graph visualization of sets of well-correlated dimensions. Users observe this graph and are able to interactively select the dimensions by sampling from its cliques, thereby dynamically specifying the most relevant lower dimensional data to be used for the construction of focused PCPs. Our interactive sampling overcomes the shortcomings of the PCPs by enabling the visualization of the most meaningful dimensions (i.e., the most relevant information) from high-dimensional spaces. We demonstrate the effectiveness of our technique through two case studies, where we show that the proposed interactive low-dimensional space constructions were pivotal for visualizing the high-dimensional data and discovering new patterns.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ITOH, Takayuki, Ashnil KUMAR, Karsten KLEIN, Jinman KIM, 2016. High-Dimensional Data Visualization by Interactive Construction of Low-Dimensional Parallel Coordinate Plots
BibTex
@unpublished{Itoh2016HighD-36753,
  year={2016},
  title={High-Dimensional Data Visualization by Interactive Construction of Low-Dimensional Parallel Coordinate Plots},
  author={Itoh, Takayuki and Kumar, Ashnil and Klein, Karsten and Kim, Jinman}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36753">
    <dc:creator>Kumar, Ashnil</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-17T14:13:30Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>High-Dimensional Data Visualization by Interactive Construction of Low-Dimensional Parallel Coordinate Plots</dcterms:title>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <dc:contributor>Kumar, Ashnil</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Itoh, Takayuki</dc:contributor>
    <dc:creator>Kim, Jinman</dc:creator>
    <dc:contributor>Kim, Jinman</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-17T14:13:30Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36753"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Itoh, Takayuki</dc:creator>
    <dcterms:abstract xml:lang="eng">Parallel coordinate plots (PCPs) are among the most useful techniques for the visualization and exploration of high-dimensional data spaces. They are especially useful for the representation of correlations among the dimensions, which identify relationships and interdependencies between variables. However, within these high-dimensional spaces, PCPs face difficulties in displaying the correlation between combinations of dimensions and generally require additional display space as the number of dimensions increases. In this paper, we present a new technique for high-dimensional data visualization in which a set of low-dimensional PCPs are interactively constructed by sampling user-selected subsets of the high-dimensional data space. In our technique, we first construct a graph visualization of sets of well-correlated dimensions. Users observe this graph and are able to interactively select the dimensions by sampling from its cliques, thereby dynamically specifying the most relevant lower dimensional data to be used for the construction of focused PCPs. Our interactive sampling overcomes the shortcomings of the PCPs by enabling the visualization of the most meaningful dimensions (i.e., the most relevant information) from high-dimensional spaces. We demonstrate the effectiveness of our technique through two case studies, where we show that the proposed interactive low-dimensional space constructions were pivotal for visualizing the high-dimensional data and discovering new patterns.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Klein, Karsten</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen