Publikation:

Analysis of Sample Correlations for Monte Carlo Rendering

Lade...
Vorschaubild

Dateien

Singh_2-1rnlhgc4j4u776.pdf
Singh_2-1rnlhgc4j4u776.pdfGröße: 796.25 KBDownloads: 284

Datum

2019

Autor:innen

Singh, Gurprit
Öztireli, Cengiz
Ahmed, Abdalla G.M.
Coeurjolly, David
Subr, Kartic
Ostromoukhov, Victor
Ramamoorthi, Ravi
Jarosz, Wojciech

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2019, 38(2), pp. 473-491. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13653

Zusammenfassung

Modern physically based rendering techniques critically depend on approximating integrals of high dimensional functions representing radiant light energy. Monte Carlo based integrators are the choice for complex scenes and effects. These integrators work by sampling the integrand at sample point locations. The distribution of these sample points determines convergence rates and noise in the final renderings. The characteristics of such distributions can be uniquely represented in terms of correlations of sampling point locations. Hence, it is essential to study these correlations to understand and adapt sample distributions for low error in integral approximation. In this work, we aim at providing a comprehensive and accessible overview of the techniques developed over the last decades to analyze such correlations, relate them to error in integrators, and understand when and how to use existing sampling algorithms for effective rendering workflows.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SINGH, Gurprit, Cengiz ÖZTIRELI, Abdalla G.M. AHMED, David COEURJOLLY, Kartic SUBR, Oliver DEUSSEN, Victor OSTROMOUKHOV, Ravi RAMAMOORTHI, Wojciech JAROSZ, 2019. Analysis of Sample Correlations for Monte Carlo Rendering. In: Computer Graphics Forum. 2019, 38(2), pp. 473-491. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13653
BibTex
@article{Singh2019-06-07Analy-46366,
  year={2019},
  doi={10.1111/cgf.13653},
  title={Analysis of Sample Correlations for Monte Carlo Rendering},
  number={2},
  volume={38},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={473--491},
  author={Singh, Gurprit and Öztireli, Cengiz and Ahmed, Abdalla G.M. and Coeurjolly, David and Subr, Kartic and Deussen, Oliver and Ostromoukhov, Victor and Ramamoorthi, Ravi and Jarosz, Wojciech}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46366">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46366/1/Singh_2-1rnlhgc4j4u776.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ahmed, Abdalla G.M.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-15T11:16:41Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46366"/>
    <dc:creator>Jarosz, Wojciech</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-15T11:16:41Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Ostromoukhov, Victor</dc:contributor>
    <dc:contributor>Ramamoorthi, Ravi</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Ostromoukhov, Victor</dc:creator>
    <dc:contributor>Coeurjolly, David</dc:contributor>
    <dc:creator>Öztireli, Cengiz</dc:creator>
    <dc:contributor>Öztireli, Cengiz</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2019-06-07</dcterms:issued>
    <dc:contributor>Ahmed, Abdalla G.M.</dc:contributor>
    <dc:contributor>Jarosz, Wojciech</dc:contributor>
    <dc:contributor>Singh, Gurprit</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46366/1/Singh_2-1rnlhgc4j4u776.pdf"/>
    <dcterms:abstract xml:lang="eng">Modern physically based rendering techniques critically depend on approximating integrals of high dimensional functions representing radiant light energy. Monte Carlo based integrators are the choice for complex scenes and effects. These integrators work by sampling the integrand at sample point locations. The distribution of these sample points determines convergence rates and noise in the final renderings. The characteristics of such distributions can be uniquely represented in terms of correlations of sampling point locations. Hence, it is essential to study these correlations to understand and adapt sample distributions for low error in integral approximation. In this work, we aim at providing a comprehensive and accessible overview of the techniques developed over the last decades to analyze such correlations, relate them to error in integrators, and understand when and how to use existing sampling algorithms for effective rendering workflows.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Coeurjolly, David</dc:creator>
    <dc:creator>Ramamoorthi, Ravi</dc:creator>
    <dc:creator>Subr, Kartic</dc:creator>
    <dc:contributor>Subr, Kartic</dc:contributor>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Singh, Gurprit</dc:creator>
    <dcterms:title>Analysis of Sample Correlations for Monte Carlo Rendering</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen