Forecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?

dc.contributor.authorZeng, Jing
dc.date.accessioned2014-11-06T13:17:46Z
dc.date.available2014-11-06T13:17:46Z
dc.date.issued2014eng
dc.description.abstractIncluding disaggregate variables or using information extracted from the disaggregate variables into a forecasting model for an economic aggregate may improve the forecasting accuracy. In this paper we suggest to use the boosting method to select the disaggregate variables which are most helpful in predicting an aggregate of interest. We conduct a simulation study to investigate the variable selection ability of this method. To assess the forecasting performance a recursive pseudo-out-of-sample forecasting experiment for six key Euro area macroeconomic variables is conducted. The results suggest that using boosting to select relevant predictors is a feasible and competitive approach in forecasting an aggregate.eng
dc.identifier.ppn41660997X
dc.identifier.urihttps://kops.uni-konstanz.de/handle/123456789/29225.1
dc.language.isoengeng
dc.relation.ispartofseriesWorking Paper Series / Department of Economicseng
dc.rightsterms-of-use
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectaggregation, macroeconomic forecasting, componentwise boosting, factor analysiseng
dc.subject.ccsC22, C43, C52, C53, C82
dc.subject.ddc330eng
dc.titleForecasting Aggregates with Disaggregate Variables : Does Boosting Help to Select the Most Relevant Predictors?eng
dc.typeWORKINGPAPEReng
dspace.entity.typePublication
kops.bibliographicInfo.seriesNumber2014-20eng
kops.description.openAccessopenaccessgreen
kops.flag.knbibliographytrue
kops.identifier.nbnurn:nbn:de:bsz:352-0-257724
kops.relation.uniknProjectTitleForecasting and Structural Analysis with Contemporaneous Aggregates of Time Series Dataeng
kops.urlhttps://ideas.repec.org/p/knz/dpteco/1420.htmleng
kops.urlDate2014-11-06eng
temp.internal.duplicates<p>Keine Dubletten gefunden. Letzte Überprüfung: 23.10.2014 09:31:23</p>deu
temp.submission.doi
temp.submission.source

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Zeng_0-257724.pdf
Größe:
477.85 KB
Format:
Adobe Portable Document Format
Zeng_0-257724.pdf
Zeng_0-257724.pdfGröße: 477.85 KBDownloads: ?

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
license.txt
Größe:
3.88 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:
license.txt
license.txtGröße: 3.88 KBDownloads: 0

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2016-02-02 08:38:20
1*
2014-11-06 13:17:46
* Ausgewählte Version