Publikation: Sample Paths Estimates for Stochastic Fast-Slow Systems Driven by Fractional Brownian Motion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We analyze the effect of additive fractional noise with Hurst parameter H>1/2 on fast-slow systems. Our strategy is based on sample paths estimates, similar to the approach by Berglund and Gentz in the Brownian motion case. Yet, the setting of fractional Brownian motion does not allow us to use the martingale methods from fast-slow systems with Brownian motion. We thoroughly investigate the case where the deterministic system permits a uniformly hyperbolic stable slow manifold. In this setting, we provide a neighborhood, tailored to the fast-slow structure of the system, that contains the process with high probability. We prove this assertion by providing exponential error estimates on the probability that the system leaves this neighborhood. We also illustrate our results in an example arising in climate modeling, where time-correlated noise processes have become of greater relevance recently.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EICHINGER, Katharina, Christian KUEHN, Alexandra BLESSING-NEAMTU, 2020. Sample Paths Estimates for Stochastic Fast-Slow Systems Driven by Fractional Brownian Motion. In: Journal of Statistical Physics. Springer Science+Business Media B.V.. 2020, 179(5-6), pp. 1222-1266. ISSN 0022-4715. eISSN 1572-9613. Available under: doi: 10.1007/s10955-020-02485-4BibTex
@article{Eichinger2020-06Sampl-53769, year={2020}, doi={10.1007/s10955-020-02485-4}, title={Sample Paths Estimates for Stochastic Fast-Slow Systems Driven by Fractional Brownian Motion}, number={5-6}, volume={179}, issn={0022-4715}, journal={Journal of Statistical Physics}, pages={1222--1266}, author={Eichinger, Katharina and Kuehn, Christian and Blessing-Neamtu, Alexandra} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53769"> <dc:rights>Attribution 4.0 International</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53769"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Eichinger, Katharina</dc:contributor> <dcterms:title>Sample Paths Estimates for Stochastic Fast-Slow Systems Driven by Fractional Brownian Motion</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-27T11:10:55Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2020-06</dcterms:issued> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">We analyze the effect of additive fractional noise with Hurst parameter H>1/2 on fast-slow systems. Our strategy is based on sample paths estimates, similar to the approach by Berglund and Gentz in the Brownian motion case. Yet, the setting of fractional Brownian motion does not allow us to use the martingale methods from fast-slow systems with Brownian motion. We thoroughly investigate the case where the deterministic system permits a uniformly hyperbolic stable slow manifold. In this setting, we provide a neighborhood, tailored to the fast-slow structure of the system, that contains the process with high probability. We prove this assertion by providing exponential error estimates on the probability that the system leaves this neighborhood. We also illustrate our results in an example arising in climate modeling, where time-correlated noise processes have become of greater relevance recently.</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor> <dc:creator>Blessing-Neamtu, Alexandra</dc:creator> <dc:creator>Kuehn, Christian</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53769/1/Eichinger_2-1rruf1f28cyy67.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-27T11:10:55Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53769/1/Eichinger_2-1rruf1f28cyy67.pdf"/> <dc:contributor>Kuehn, Christian</dc:contributor> <dc:creator>Eichinger, Katharina</dc:creator> </rdf:Description> </rdf:RDF>