Publikation:

Sample Paths Estimates for Stochastic Fast-Slow Systems Driven by Fractional Brownian Motion

Lade...
Vorschaubild

Dateien

Eichinger_2-1rruf1f28cyy67.pdf
Eichinger_2-1rruf1f28cyy67.pdfGröße: 1.15 MBDownloads: 169

Datum

2020

Autor:innen

Eichinger, Katharina
Kuehn, Christian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Statistical Physics. Springer Science+Business Media B.V.. 2020, 179(5-6), pp. 1222-1266. ISSN 0022-4715. eISSN 1572-9613. Available under: doi: 10.1007/s10955-020-02485-4

Zusammenfassung

We analyze the effect of additive fractional noise with Hurst parameter H>1/2 on fast-slow systems. Our strategy is based on sample paths estimates, similar to the approach by Berglund and Gentz in the Brownian motion case. Yet, the setting of fractional Brownian motion does not allow us to use the martingale methods from fast-slow systems with Brownian motion. We thoroughly investigate the case where the deterministic system permits a uniformly hyperbolic stable slow manifold. In this setting, we provide a neighborhood, tailored to the fast-slow structure of the system, that contains the process with high probability. We prove this assertion by providing exponential error estimates on the probability that the system leaves this neighborhood. We also illustrate our results in an example arising in climate modeling, where time-correlated noise processes have become of greater relevance recently.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Fast-slow systems, Fractional Brownian motion, Sample path estimates, Correlated noise, AMOC model

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EICHINGER, Katharina, Christian KUEHN, Alexandra BLESSING-NEAMTU, 2020. Sample Paths Estimates for Stochastic Fast-Slow Systems Driven by Fractional Brownian Motion. In: Journal of Statistical Physics. Springer Science+Business Media B.V.. 2020, 179(5-6), pp. 1222-1266. ISSN 0022-4715. eISSN 1572-9613. Available under: doi: 10.1007/s10955-020-02485-4
BibTex
@article{Eichinger2020-06Sampl-53769,
  year={2020},
  doi={10.1007/s10955-020-02485-4},
  title={Sample Paths Estimates for Stochastic Fast-Slow Systems Driven by Fractional Brownian Motion},
  number={5-6},
  volume={179},
  issn={0022-4715},
  journal={Journal of Statistical Physics},
  pages={1222--1266},
  author={Eichinger, Katharina and Kuehn, Christian and Blessing-Neamtu, Alexandra}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53769">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53769"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Eichinger, Katharina</dc:contributor>
    <dcterms:title>Sample Paths Estimates for Stochastic Fast-Slow Systems Driven by Fractional Brownian Motion</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-27T11:10:55Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2020-06</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">We analyze the effect of additive fractional noise with Hurst parameter H&gt;1/2 on fast-slow systems. Our strategy is based on sample paths estimates, similar to the approach by Berglund and Gentz in the Brownian motion case. Yet, the setting of fractional Brownian motion does not allow us to use the martingale methods from fast-slow systems with Brownian motion. We thoroughly investigate the case where the deterministic system permits a uniformly hyperbolic stable slow manifold. In this setting, we provide a neighborhood, tailored to the fast-slow structure of the system, that contains the process with high probability. We prove this assertion by providing exponential error estimates on the probability that the system leaves this neighborhood. We also illustrate our results in an example arising in climate modeling, where time-correlated noise processes have become of greater relevance recently.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor>
    <dc:creator>Blessing-Neamtu, Alexandra</dc:creator>
    <dc:creator>Kuehn, Christian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53769/1/Eichinger_2-1rruf1f28cyy67.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-27T11:10:55Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53769/1/Eichinger_2-1rruf1f28cyy67.pdf"/>
    <dc:contributor>Kuehn, Christian</dc:contributor>
    <dc:creator>Eichinger, Katharina</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen