Publikation:

A Weak Scalability Analysis For Optimized Schwarz Methods

Lade...
Vorschaubild

Dateien

Kartmann_2-1rrvhpmkai8mw0.pdf
Kartmann_2-1rrvhpmkai8mw0.pdfGröße: 1.5 MBDownloads: 95

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Bachelorarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Optimized Schwarz Methods (OSM) are Domain Decomposition (DD) methods for solving efficiently PDEs by splitting the computational domain in subdomains and solve iteratively through the resulting subproblems. The more subdomains are used, the greater the gain from parallelization can be, but on the other hand the slower the convergence of the OSM can be, which results in the question of scalability. In this thesis we show via Fourier analysis that OSMs for certain elliptic problems are weakly scalable, i.e., that they converge independent of the number of subdomains used.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Domain Decomposition, Elliptic PDEs, Weak Scalability, Optimized Schwarz Methods, Fourier Analysis

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KARTMANN, Michael, 2019. A Weak Scalability Analysis For Optimized Schwarz Methods [Bachelor thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Kartmann2019Scala-58353,
  year={2019},
  title={A Weak Scalability Analysis For Optimized Schwarz Methods},
  address={Konstanz},
  school={Universität Konstanz},
  author={Kartmann, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58353">
    <dc:language>eng</dc:language>
    <dc:creator>Kartmann, Michael</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58353"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-22T09:03:39Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>A Weak Scalability Analysis For Optimized Schwarz Methods</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-22T09:03:39Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58353/3/Kartmann_2-1rrvhpmkai8mw0.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kartmann, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Optimized Schwarz Methods (OSM) are Domain Decomposition (DD) methods for solving efficiently PDEs by splitting the computational domain in subdomains and solve iteratively through the resulting subproblems. The more subdomains are used, the greater the gain from parallelization can be, but on the other hand the slower the convergence of the OSM can be, which results in the question of scalability. In this thesis we show via Fourier analysis that OSMs for certain elliptic problems are weakly scalable, i.e., that they converge independent of the number of subdomains used.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58353/3/Kartmann_2-1rrvhpmkai8mw0.pdf"/>
    <dcterms:issued>2019</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Bachelorarbeit, 2020
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen