Publikation: High and low dimensions in the black hole negative mode
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2007
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Classical and Quantum Gravity. Institute of Physics Publishing (IOP). 2007, 24(22), pp. 5527-5540. ISSN 0264-9381. eISSN 1361-6382. Available under: doi: 10.1088/0264-9381/24/22/015
Zusammenfassung
The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory–Laflamme black string instability. We analyze the eigenvalue as a function of spacetime dimension λ = λ(d) by constructing two perturbative expansions: one for large d and the other for small d − 3, and determining as many coefficients as we are able to compute analytically. By joining the two expansions, we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d = 4.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ASNIN, Vadim, Dan GORBONOS, Shahar HADAR, Barak KOL, Michele LEVI, Umpei MIYAMOTO, 2007. High and low dimensions in the black hole negative mode. In: Classical and Quantum Gravity. Institute of Physics Publishing (IOP). 2007, 24(22), pp. 5527-5540. ISSN 0264-9381. eISSN 1361-6382. Available under: doi: 10.1088/0264-9381/24/22/015BibTex
@article{Asnin2007-11-21dimen-51510, year={2007}, doi={10.1088/0264-9381/24/22/015}, title={High and low dimensions in the black hole negative mode}, number={22}, volume={24}, issn={0264-9381}, journal={Classical and Quantum Gravity}, pages={5527--5540}, author={Asnin, Vadim and Gorbonos, Dan and Hadar, Shahar and Kol, Barak and Levi, Michele and Miyamoto, Umpei} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51510"> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Asnin, Vadim</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51510"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-28T13:22:34Z</dcterms:available> <dc:creator>Levi, Michele</dc:creator> <dc:contributor>Miyamoto, Umpei</dc:contributor> <dc:contributor>Gorbonos, Dan</dc:contributor> <dcterms:title>High and low dimensions in the black hole negative mode</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-28T13:22:34Z</dc:date> <dc:creator>Miyamoto, Umpei</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2007-11-21</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Hadar, Shahar</dc:creator> <dc:creator>Kol, Barak</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:abstract xml:lang="eng">The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory–Laflamme black string instability. We analyze the eigenvalue as a function of spacetime dimension λ = λ(d) by constructing two perturbative expansions: one for large d and the other for small d − 3, and determining as many coefficients as we are able to compute analytically. By joining the two expansions, we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d = 4.</dcterms:abstract> <dc:creator>Gorbonos, Dan</dc:creator> <dc:contributor>Levi, Michele</dc:contributor> <dc:contributor>Hadar, Shahar</dc:contributor> <dc:contributor>Kol, Barak</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Asnin, Vadim</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja