Publikation:

The Truncated Moment Problem on N0

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Kuna, Tobias
Lebowitz, Joel L.
Speer, Eugene R.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Mathematical Analysis and Applications. 2017, 452(1), pp. 443-468. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2017.02.060

Zusammenfassung

We find necessary and sufficient conditions for the existence of a probability measure on N0, the nonnegative integers, whose first n moments are a given n-tuple of nonnegative real numbers. The results, based on finding an optimal polynomial of degree n which is nonnegative on N0 (and which depends on the moments), and requiring that its expectation be nonnegative, generalize previous results known for n=1, n=2 (the Percus-Yamada condition), and partially for n=3. The conditions for realizability are given explicitly for n ≤ 5 and in a finitely computable form for n ≥ 6. We also find, for all n, explicit bounds, in terms of the moments, whose satisfaction is enough to guarantee realizability. Analogous results are given for the truncated moment problem on an infinite discrete semi-bounded subset of R.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

truncated moment problem; discrete moment problem; realizability

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690INFUSINO, Maria, Tobias KUNA, Joel L. LEBOWITZ, Eugene R. SPEER, 2017. The Truncated Moment Problem on N0. In: Journal of Mathematical Analysis and Applications. 2017, 452(1), pp. 443-468. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2017.02.060
BibTex
@article{Infusino2017Trunc-33286,
  year={2017},
  doi={10.1016/j.jmaa.2017.02.060},
  title={The Truncated Moment Problem on N<sub>0</sub>},
  number={1},
  volume={452},
  issn={0022-247X},
  journal={Journal of Mathematical Analysis and Applications},
  pages={443--468},
  author={Infusino, Maria and Kuna, Tobias and Lebowitz, Joel L. and Speer, Eugene R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33286">
    <dc:creator>Lebowitz, Joel L.</dc:creator>
    <dc:creator>Kuna, Tobias</dc:creator>
    <dc:contributor>Infusino, Maria</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33286"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-10T09:58:58Z</dc:date>
    <dcterms:title>The Truncated Moment Problem on N&lt;sub&gt;0&lt;/sub&gt;</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Speer, Eugene R.</dc:creator>
    <dc:contributor>Kuna, Tobias</dc:contributor>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We find necessary and sufficient conditions for the existence of a probability measure on N&lt;sub&gt;0&lt;/sub&gt;, the nonnegative integers, whose first n moments are a given n-tuple of nonnegative real numbers. The results, based on finding an optimal polynomial of degree n which is nonnegative on N&lt;sub&gt;0&lt;/sub&gt; (and which depends on the moments), and requiring that its expectation be nonnegative, generalize previous results known for n=1, n=2 (the Percus-Yamada condition), and partially for n=3. The conditions for realizability are given explicitly for n ≤ 5 and in a finitely computable form for n ≥ 6. We also find, for all n, explicit bounds, in terms of the moments, whose satisfaction is enough to guarantee realizability. Analogous results are given for the truncated moment problem on an infinite discrete semi-bounded subset of R.</dcterms:abstract>
    <dc:contributor>Speer, Eugene R.</dc:contributor>
    <dc:contributor>Lebowitz, Joel L.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Infusino, Maria</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-10T09:58:58Z</dcterms:available>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen