Publikation: The Truncated Moment Problem on N0
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We find necessary and sufficient conditions for the existence of a probability measure on N0, the nonnegative integers, whose first n moments are a given n-tuple of nonnegative real numbers. The results, based on finding an optimal polynomial of degree n which is nonnegative on N0 (and which depends on the moments), and requiring that its expectation be nonnegative, generalize previous results known for n=1, n=2 (the Percus-Yamada condition), and partially for n=3. The conditions for realizability are given explicitly for n ≤ 5 and in a finitely computable form for n ≥ 6. We also find, for all n, explicit bounds, in terms of the moments, whose satisfaction is enough to guarantee realizability. Analogous results are given for the truncated moment problem on an infinite discrete semi-bounded subset of R.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
INFUSINO, Maria, Tobias KUNA, Joel L. LEBOWITZ, Eugene R. SPEER, 2017. The Truncated Moment Problem on N0. In: Journal of Mathematical Analysis and Applications. 2017, 452(1), pp. 443-468. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2017.02.060BibTex
@article{Infusino2017Trunc-33286, year={2017}, doi={10.1016/j.jmaa.2017.02.060}, title={The Truncated Moment Problem on N<sub>0</sub>}, number={1}, volume={452}, issn={0022-247X}, journal={Journal of Mathematical Analysis and Applications}, pages={443--468}, author={Infusino, Maria and Kuna, Tobias and Lebowitz, Joel L. and Speer, Eugene R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33286"> <dc:creator>Lebowitz, Joel L.</dc:creator> <dc:creator>Kuna, Tobias</dc:creator> <dc:contributor>Infusino, Maria</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33286"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-10T09:58:58Z</dc:date> <dcterms:title>The Truncated Moment Problem on N<sub>0</sub></dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Speer, Eugene R.</dc:creator> <dc:contributor>Kuna, Tobias</dc:contributor> <dcterms:issued>2017</dcterms:issued> <dcterms:abstract xml:lang="eng">We find necessary and sufficient conditions for the existence of a probability measure on N<sub>0</sub>, the nonnegative integers, whose first n moments are a given n-tuple of nonnegative real numbers. The results, based on finding an optimal polynomial of degree n which is nonnegative on N<sub>0</sub> (and which depends on the moments), and requiring that its expectation be nonnegative, generalize previous results known for n=1, n=2 (the Percus-Yamada condition), and partially for n=3. The conditions for realizability are given explicitly for n ≤ 5 and in a finitely computable form for n ≥ 6. We also find, for all n, explicit bounds, in terms of the moments, whose satisfaction is enough to guarantee realizability. Analogous results are given for the truncated moment problem on an infinite discrete semi-bounded subset of R.</dcterms:abstract> <dc:contributor>Speer, Eugene R.</dc:contributor> <dc:contributor>Lebowitz, Joel L.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Infusino, Maria</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-10T09:58:58Z</dcterms:available> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>