Publikation:

Deciding positivity of multisymmetric polynomials

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Symbolic Computation. 2016, 74, pp. 603-616. ISSN 0747-7171. eISSN 1095-855X. Available under: doi: 10.1016/j.jsc.2015.10.001

Zusammenfassung

The question how to certify non-negativity of a polynomial function lies at the heart of Real Algebra and also has important applications to Optimization. In this article we investigate the question of non-negativity in the context of multisymmetric polynomials. In this setting we generalize the characterization of non-negative symmetric polynomials given in Timofte (2003), Riener (2012) by adapting the method of proof developed in Riener (2013). One particular case where our results can be applied is the question of certifying that a (multi-)symmetric polynomial defines a convex function. As a direct corollary of our main result we deduce that in the case of a fixed degree it is possible to derive a method to test for convexity which makes use of the special structure of (multi-)symmetric polynomials. In particular it follows that we are able to drastically simplify the algorithmic complexity of this question in the presence of symmetry. This is not to be expected in the general (i.e. non-symmetric) case, where it is known that testing for convexity is NP-hard already in the case of polynomials of degree 4 (Ahmadi et al., 2013).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Multi-symmetric function, Positivity, Convexity

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GÖRLACH, Paul, Cordian RIENER, Tillmann WEISSER, 2016. Deciding positivity of multisymmetric polynomials. In: Journal of Symbolic Computation. 2016, 74, pp. 603-616. ISSN 0747-7171. eISSN 1095-855X. Available under: doi: 10.1016/j.jsc.2015.10.001
BibTex
@article{Gorlach2016Decid-32900,
  year={2016},
  doi={10.1016/j.jsc.2015.10.001},
  title={Deciding positivity of multisymmetric polynomials},
  volume={74},
  issn={0747-7171},
  journal={Journal of Symbolic Computation},
  pages={603--616},
  author={Görlach, Paul and Riener, Cordian and Weißer, Tillmann}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32900">
    <dc:contributor>Weißer, Tillmann</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32900"/>
    <dc:contributor>Görlach, Paul</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Deciding positivity of multisymmetric polynomials</dcterms:title>
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Riener, Cordian</dc:contributor>
    <dcterms:abstract xml:lang="eng">The question how to certify non-negativity of a polynomial function lies at the heart of Real Algebra and also has important applications to Optimization. In this article we investigate the question of non-negativity in the context of multisymmetric polynomials. In this setting we generalize the characterization of non-negative symmetric polynomials given in Timofte (2003), Riener (2012) by adapting the method of proof developed in Riener (2013). One particular case where our results can be applied is the question of certifying that a (multi-)symmetric polynomial defines a convex function. As a direct corollary of our main result we deduce that in the case of a fixed degree it is possible to derive a method to test for convexity which makes use of the special structure of (multi-)symmetric polynomials. In particular it follows that we are able to drastically simplify the algorithmic complexity of this question in the presence of symmetry. This is not to be expected in the general (i.e. non-symmetric) case, where it is known that testing for convexity is NP-hard already in the case of polynomials of degree 4 (Ahmadi et al., 2013).</dcterms:abstract>
    <dc:creator>Weißer, Tillmann</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-08T13:34:34Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:creator>Görlach, Paul</dc:creator>
    <dc:creator>Riener, Cordian</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-08T13:34:34Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen