Deciding positivity of multisymmetric polynomials

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Symbolic Computation ; 74 (2016). - S. 603-616. - ISSN 0747-7171. - eISSN 1095-855X
Zusammenfassung
The question how to certify non-negativity of a polynomial function lies at the heart of Real Algebra and also has important applications to Optimization. In this article we investigate the question of non-negativity in the context of multisymmetric polynomials. In this setting we generalize the characterization of non-negative symmetric polynomials given in Timofte (2003), Riener (2012) by adapting the method of proof developed in Riener (2013). One particular case where our results can be applied is the question of certifying that a (multi-)symmetric polynomial defines a convex function. As a direct corollary of our main result we deduce that in the case of a fixed degree it is possible to derive a method to test for convexity which makes use of the special structure of (multi-)symmetric polynomials. In particular it follows that we are able to drastically simplify the algorithmic complexity of this question in the presence of symmetry. This is not to be expected in the general (i.e. non-symmetric) case, where it is known that testing for convexity is NP-hard already in the case of polynomials of degree 4 (Ahmadi et al., 2013).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Multi-symmetric function, Positivity, Convexity
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690GÖRLACH, Paul, Cordian RIENER, Tillmann WEISSER, 2016. Deciding positivity of multisymmetric polynomials. In: Journal of Symbolic Computation. 74, pp. 603-616. ISSN 0747-7171. eISSN 1095-855X. Available under: doi: 10.1016/j.jsc.2015.10.001
BibTex
@article{Gorlach2016Decid-32900,
  year={2016},
  doi={10.1016/j.jsc.2015.10.001},
  title={Deciding positivity of multisymmetric polynomials},
  volume={74},
  issn={0747-7171},
  journal={Journal of Symbolic Computation},
  pages={603--616},
  author={Görlach, Paul and Riener, Cordian and Weißer, Tillmann}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32900">
    <dc:contributor>Weißer, Tillmann</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32900"/>
    <dc:contributor>Görlach, Paul</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Deciding positivity of multisymmetric polynomials</dcterms:title>
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Riener, Cordian</dc:contributor>
    <dcterms:abstract xml:lang="eng">The question how to certify non-negativity of a polynomial function lies at the heart of Real Algebra and also has important applications to Optimization. In this article we investigate the question of non-negativity in the context of multisymmetric polynomials. In this setting we generalize the characterization of non-negative symmetric polynomials given in Timofte (2003), Riener (2012) by adapting the method of proof developed in Riener (2013). One particular case where our results can be applied is the question of certifying that a (multi-)symmetric polynomial defines a convex function. As a direct corollary of our main result we deduce that in the case of a fixed degree it is possible to derive a method to test for convexity which makes use of the special structure of (multi-)symmetric polynomials. In particular it follows that we are able to drastically simplify the algorithmic complexity of this question in the presence of symmetry. This is not to be expected in the general (i.e. non-symmetric) case, where it is known that testing for convexity is NP-hard already in the case of polynomials of degree 4 (Ahmadi et al., 2013).</dcterms:abstract>
    <dc:creator>Weißer, Tillmann</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-08T13:34:34Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:creator>Görlach, Paul</dc:creator>
    <dc:creator>Riener, Cordian</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-08T13:34:34Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet