Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Autor:innen
Doborjeh, Zohreh
Doborjeh, Maryam
Sumich, Alexander
Singh, Balkaran
Budhraja, Sugam
Goh, Wilson
Williams, Margaret
Tan, Samuel
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Schizophrenia ; 9 (2023), 1. - 10. - Springer Science and Business Media LLC. - eISSN 2754-6993
Zusammenfassung
Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56–64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690DOBORJEH, Zohreh, Maryam DOBORJEH, Alexander SUMICH, Balkaran SINGH, Alexander MERKIN, Sugam BUDHRAJA, Wilson GOH, Margaret WILLIAMS, Samuel TAN, 2023. Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks. In: Schizophrenia. Springer Science and Business Media LLC. 9(1), 10. eISSN 2754-6993. Available under: doi: 10.1038/s41537-023-00335-2
BibTex
@article{Doborjeh2023-02-15Inves-66504,
  year={2023},
  doi={10.1038/s41537-023-00335-2},
  title={Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks},
  number={1},
  volume={9},
  journal={Schizophrenia},
  author={Doborjeh, Zohreh and Doborjeh, Maryam and Sumich, Alexander and Singh, Balkaran and Merkin, Alexander and Budhraja, Sugam and Goh, Wilson and Williams, Margaret and Tan, Samuel},
  note={Article Number: 10}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66504">
    <dc:contributor>Goh, Wilson</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Tan, Samuel</dc:creator>
    <dc:contributor>Williams, Margaret</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Budhraja, Sugam</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66504"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-30T12:12:30Z</dc:date>
    <dc:creator>Williams, Margaret</dc:creator>
    <dc:contributor>Doborjeh, Zohreh</dc:contributor>
    <dc:contributor>Sumich, Alexander</dc:contributor>
    <dcterms:abstract>Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56–64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.</dcterms:abstract>
    <dcterms:title>Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks</dcterms:title>
    <dc:creator>Singh, Balkaran</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Budhraja, Sugam</dc:creator>
    <dc:creator>Doborjeh, Maryam</dc:creator>
    <dc:contributor>Merkin, Alexander</dc:contributor>
    <dcterms:issued>2023-02-15</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-30T12:12:30Z</dcterms:available>
    <dc:creator>Merkin, Alexander</dc:creator>
    <dc:contributor>Doborjeh, Maryam</dc:contributor>
    <dc:creator>Doborjeh, Zohreh</dc:creator>
    <dc:contributor>Singh, Balkaran</dc:contributor>
    <dc:creator>Sumich, Alexander</dc:creator>
    <dc:contributor>Tan, Samuel</dc:contributor>
    <dc:creator>Goh, Wilson</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja