Publikation:

Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks

Lade...
Vorschaubild

Dateien

Doborjeh_2-1s4huaa7op9s96.pdf
Doborjeh_2-1s4huaa7op9s96.pdfGröße: 1.78 MBDownloads: 9

Datum

2023

Autor:innen

Doborjeh, Zohreh
Doborjeh, Maryam
Sumich, Alexander
Singh, Balkaran
Budhraja, Sugam
Goh, Wilson
Williams, Margaret
Tan, Samuel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Schizophrenia. Springer. 2023, 9(1), 10. eISSN 2754-6993. Available under: doi: 10.1038/s41537-023-00335-2

Zusammenfassung

Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56–64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DOBORJEH, Zohreh, Maryam DOBORJEH, Alexander SUMICH, Balkaran SINGH, Alexander MERKIN, Sugam BUDHRAJA, Wilson GOH, Margaret WILLIAMS, Samuel TAN, 2023. Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks. In: Schizophrenia. Springer. 2023, 9(1), 10. eISSN 2754-6993. Available under: doi: 10.1038/s41537-023-00335-2
BibTex
@article{Doborjeh2023-02-15Inves-66504,
  year={2023},
  doi={10.1038/s41537-023-00335-2},
  title={Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks},
  number={1},
  volume={9},
  journal={Schizophrenia},
  author={Doborjeh, Zohreh and Doborjeh, Maryam and Sumich, Alexander and Singh, Balkaran and Merkin, Alexander and Budhraja, Sugam and Goh, Wilson and Williams, Margaret and Tan, Samuel},
  note={Article Number: 10}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66504">
    <dc:contributor>Goh, Wilson</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Tan, Samuel</dc:creator>
    <dc:contributor>Williams, Margaret</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Budhraja, Sugam</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66504"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66504/1/Doborjeh_2-1s4huaa7op9s96.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-30T12:12:30Z</dc:date>
    <dc:creator>Williams, Margaret</dc:creator>
    <dc:contributor>Doborjeh, Zohreh</dc:contributor>
    <dc:contributor>Sumich, Alexander</dc:contributor>
    <dcterms:abstract>Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56–64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.</dcterms:abstract>
    <dcterms:title>Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks</dcterms:title>
    <dc:creator>Singh, Balkaran</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Budhraja, Sugam</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66504/1/Doborjeh_2-1s4huaa7op9s96.pdf"/>
    <dc:creator>Doborjeh, Maryam</dc:creator>
    <dc:contributor>Merkin, Alexander</dc:contributor>
    <dcterms:issued>2023-02-15</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-30T12:12:30Z</dcterms:available>
    <dc:creator>Merkin, Alexander</dc:creator>
    <dc:contributor>Doborjeh, Maryam</dc:contributor>
    <dc:creator>Doborjeh, Zohreh</dc:creator>
    <dc:contributor>Singh, Balkaran</dc:contributor>
    <dc:creator>Sumich, Alexander</dc:creator>
    <dc:contributor>Tan, Samuel</dc:contributor>
    <dc:creator>Goh, Wilson</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
Software used for the implementation of the designed method
Diese Publikation teilen