Publikation: Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56–64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DOBORJEH, Zohreh, Maryam DOBORJEH, Alexander SUMICH, Balkaran SINGH, Alexander MERKIN, Sugam BUDHRAJA, Wilson GOH, Margaret WILLIAMS, Samuel TAN, 2023. Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks. In: Schizophrenia. Springer. 2023, 9(1), 10. eISSN 2754-6993. Available under: doi: 10.1038/s41537-023-00335-2BibTex
@article{Doborjeh2023-02-15Inves-66504, year={2023}, doi={10.1038/s41537-023-00335-2}, title={Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks}, number={1}, volume={9}, journal={Schizophrenia}, author={Doborjeh, Zohreh and Doborjeh, Maryam and Sumich, Alexander and Singh, Balkaran and Merkin, Alexander and Budhraja, Sugam and Goh, Wilson and Williams, Margaret and Tan, Samuel}, note={Article Number: 10} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66504"> <dc:contributor>Goh, Wilson</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Tan, Samuel</dc:creator> <dc:contributor>Williams, Margaret</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Budhraja, Sugam</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66504"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66504/1/Doborjeh_2-1s4huaa7op9s96.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-30T12:12:30Z</dc:date> <dc:creator>Williams, Margaret</dc:creator> <dc:contributor>Doborjeh, Zohreh</dc:contributor> <dc:contributor>Sumich, Alexander</dc:contributor> <dcterms:abstract>Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56–64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.</dcterms:abstract> <dcterms:title>Investigation of social and cognitive predictors in non-transition ultra-high-risk’ individuals for psychosis using spiking neural networks</dcterms:title> <dc:creator>Singh, Balkaran</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Budhraja, Sugam</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66504/1/Doborjeh_2-1s4huaa7op9s96.pdf"/> <dc:creator>Doborjeh, Maryam</dc:creator> <dc:contributor>Merkin, Alexander</dc:contributor> <dcterms:issued>2023-02-15</dcterms:issued> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-30T12:12:30Z</dcterms:available> <dc:creator>Merkin, Alexander</dc:creator> <dc:contributor>Doborjeh, Maryam</dc:contributor> <dc:creator>Doborjeh, Zohreh</dc:creator> <dc:contributor>Singh, Balkaran</dc:contributor> <dc:creator>Sumich, Alexander</dc:creator> <dc:contributor>Tan, Samuel</dc:contributor> <dc:creator>Goh, Wilson</dc:creator> </rdf:Description> </rdf:RDF>