Publikation:

On Local Trigonometric Regression Under Dependence

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Time Series Analysis. 2018, 39(4), pp. 592-617. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/jtsa.12287

Zusammenfassung

We consider nonparametric estimation of an additive time series decomposition into a long‐term trend μ and a smoothly changing seasonal component S under general assumptions on the dependence structure of the residual process. The rate of convergence of local trigonometric regression estimators of S turns out to be unaffected by the dependence, even though the spectral density of the residual process has a pole at the origin. In contrast, the rate of convergence of nonparametric estimators of μ depends on the long‐memory parameter d. Therefore, in the presence of long‐range dependence, different bandwidths for estimating μ and S should be used. A data adaptive algorithm for optimal bandwidth choice is proposed. Simulations and data examples illustrate the results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Britta STEFFENS, Sucharita GHOSH, 2018. On Local Trigonometric Regression Under Dependence. In: Journal of Time Series Analysis. 2018, 39(4), pp. 592-617. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/jtsa.12287
BibTex
@article{Beran2018-07Local-42663,
  year={2018},
  doi={10.1111/jtsa.12287},
  title={On Local Trigonometric Regression Under Dependence},
  number={4},
  volume={39},
  issn={0143-9782},
  journal={Journal of Time Series Analysis},
  pages={592--617},
  author={Beran, Jan and Steffens, Britta and Ghosh, Sucharita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42663">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T11:51:44Z</dc:date>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Beran, Jan</dc:creator>
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <dcterms:abstract xml:lang="eng">We consider nonparametric estimation of an additive time series decomposition into a long‐term trend μ and a smoothly changing seasonal component S under general assumptions on the dependence structure of the residual process. The rate of convergence of local trigonometric regression estimators of S turns out to be unaffected by the dependence, even though the spectral density of the residual process has a pole at the origin. In contrast, the rate of convergence of nonparametric estimators of μ depends on the long‐memory parameter d. Therefore, in the presence of long‐range dependence, different bandwidths for estimating μ and S should be used. A data adaptive algorithm for optimal bandwidth choice is proposed. Simulations and data examples illustrate the results.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42663"/>
    <dc:creator>Steffens, Britta</dc:creator>
    <dc:contributor>Steffens, Britta</dc:contributor>
    <dcterms:issued>2018-07</dcterms:issued>
    <dcterms:title>On Local Trigonometric Regression Under Dependence</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T11:51:44Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen