Publikation: On Local Trigonometric Regression Under Dependence
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider nonparametric estimation of an additive time series decomposition into a long‐term trend μ and a smoothly changing seasonal component S under general assumptions on the dependence structure of the residual process. The rate of convergence of local trigonometric regression estimators of S turns out to be unaffected by the dependence, even though the spectral density of the residual process has a pole at the origin. In contrast, the rate of convergence of nonparametric estimators of μ depends on the long‐memory parameter d. Therefore, in the presence of long‐range dependence, different bandwidths for estimating μ and S should be used. A data adaptive algorithm for optimal bandwidth choice is proposed. Simulations and data examples illustrate the results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, Britta STEFFENS, Sucharita GHOSH, 2018. On Local Trigonometric Regression Under Dependence. In: Journal of Time Series Analysis. 2018, 39(4), pp. 592-617. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/jtsa.12287BibTex
@article{Beran2018-07Local-42663, year={2018}, doi={10.1111/jtsa.12287}, title={On Local Trigonometric Regression Under Dependence}, number={4}, volume={39}, issn={0143-9782}, journal={Journal of Time Series Analysis}, pages={592--617}, author={Beran, Jan and Steffens, Britta and Ghosh, Sucharita} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42663"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T11:51:44Z</dc:date> <dc:contributor>Beran, Jan</dc:contributor> <dc:contributor>Ghosh, Sucharita</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Beran, Jan</dc:creator> <dc:creator>Ghosh, Sucharita</dc:creator> <dcterms:abstract xml:lang="eng">We consider nonparametric estimation of an additive time series decomposition into a long‐term trend μ and a smoothly changing seasonal component S under general assumptions on the dependence structure of the residual process. The rate of convergence of local trigonometric regression estimators of S turns out to be unaffected by the dependence, even though the spectral density of the residual process has a pole at the origin. In contrast, the rate of convergence of nonparametric estimators of μ depends on the long‐memory parameter d. Therefore, in the presence of long‐range dependence, different bandwidths for estimating μ and S should be used. A data adaptive algorithm for optimal bandwidth choice is proposed. Simulations and data examples illustrate the results.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42663"/> <dc:creator>Steffens, Britta</dc:creator> <dc:contributor>Steffens, Britta</dc:contributor> <dcterms:issued>2018-07</dcterms:issued> <dcterms:title>On Local Trigonometric Regression Under Dependence</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T11:51:44Z</dcterms:available> </rdf:Description> </rdf:RDF>