Publikation: Strain-controlled nonvolatile magnetization switching
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GEPRÄGS, Stephan, Andreas BRANDLMAIER, Martin S. BRANDT, Rudolf GROSS, Sebastian T. B. GOENNENWEIN, 2014. Strain-controlled nonvolatile magnetization switching. In: Solid State Communications. Elsevier. 2014, 198, pp. 7-12. ISSN 0038-1098. eISSN 1879-2766. Available under: doi: 10.1016/j.ssc.2013.07.019BibTex
@article{Geprags2014Strai-52424, year={2014}, doi={10.1016/j.ssc.2013.07.019}, title={Strain-controlled nonvolatile magnetization switching}, volume={198}, issn={0038-1098}, journal={Solid State Communications}, pages={7--12}, author={Geprägs, Stephan and Brandlmaier, Andreas and Brandt, Martin S. and Gross, Rudolf and Goennenwein, Sebastian T. B.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52424"> <dcterms:title>Strain-controlled nonvolatile magnetization switching</dcterms:title> <dc:contributor>Gross, Rudolf</dc:contributor> <dc:contributor>Brandt, Martin S.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52424"/> <dc:creator>Gross, Rudolf</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2014</dcterms:issued> <dc:creator>Brandt, Martin S.</dc:creator> <dc:contributor>Goennenwein, Sebastian T. B.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Geprägs, Stephan</dc:creator> <dc:contributor>Brandlmaier, Andreas</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Goennenwein, Sebastian T. B.</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.</dcterms:abstract> <dc:contributor>Geprägs, Stephan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T12:43:38Z</dc:date> <dc:creator>Brandlmaier, Andreas</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T12:43:38Z</dcterms:available> </rdf:Description> </rdf:RDF>