DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In supervised learning, to ensure the model's validity, it is essential to identify dataset shifts, i.e., when the data distribution changes from the one the model encountered at the time of training. To detect such changes, a comparative analysis of the multidimensional data distributions of the training data and new, unseen datasets is required. In this paper, we span the design space of visualizations for multidimensional comparative data analytics. Based on this design space, we present DataShiftExplorer, a technique tailored to identify and analyze the change in multidimensional data distributions. Throughout examples, we show how DataShiftExplorer facilitates the identification and analysis of data changes, supporting supervised learning.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHNEIDER, Bruno, Daniel A. KEIM, Mennatallah EL-ASSADY, 2020. DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning. 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020. Valletta, Malta, 27. Feb. 2020 - 29. Feb. 2020. In: KERREN, Andreas, ed. and others. VISIGRAPP 2020 : proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Valletta, Malta, February 27-29, 2020 ; Volume 3: IVAPP. Sétubal: SCITEPRESS, 2020, pp. 141-148. ISBN 9789897584022. Available under: doi: 10.5220/0008940801410148BibTex
@inproceedings{Schneider2020-02-27DataS-52868, year={2020}, doi={10.5220/0008940801410148}, title={DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning}, isbn={9789897584022}, publisher={SCITEPRESS}, address={Sétubal}, booktitle={VISIGRAPP 2020 : proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Valletta, Malta, February 27-29, 2020 ; Volume 3: IVAPP}, pages={141--148}, editor={Kerren, Andreas}, author={Schneider, Bruno and Keim, Daniel A. and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52868"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-17T09:45:10Z</dc:date> <dc:creator>El-Assady, Mennatallah</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52868"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52868/1/Schneider_2-1sbj1x8la4jtz2.pdf"/> <dcterms:abstract xml:lang="eng">In supervised learning, to ensure the model's validity, it is essential to identify dataset shifts, i.e., when the data distribution changes from the one the model encountered at the time of training. To detect such changes, a comparative analysis of the multidimensional data distributions of the training data and new, unseen datasets is required. In this paper, we span the design space of visualizations for multidimensional comparative data analytics. Based on this design space, we present DataShiftExplorer, a technique tailored to identify and analyze the change in multidimensional data distributions. Throughout examples, we show how DataShiftExplorer facilitates the identification and analysis of data changes, supporting supervised learning.</dcterms:abstract> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-17T09:45:10Z</dcterms:available> <dcterms:title>DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:creator>Schneider, Bruno</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52868/1/Schneider_2-1sbj1x8la4jtz2.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:contributor>Schneider, Bruno</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2020-02-27</dcterms:issued> </rdf:Description> </rdf:RDF>