Publikation:

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems

Lade...
Vorschaubild

Dateien

Volkwein.pdf
Volkwein.pdfGröße: 2.12 MBDownloads: 279

Datum

2011

Autor:innen

Kahlbacher, Martin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ESAIM: Mathematical Modelling and Numerical Analysis. 2011, 46(2), pp. 491-511. ISSN 0764-583X. Available under: doi: 10.1051/m2an/2011061

Zusammenfassung

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch and Volkwein [Comput. Opt. Appl. 44 (2009) 83–115] the difference of the suboptimal to the (unknown) optimal solution of the linear-quadratic subproblem is estimated. Hence, the inexactness of the discrete solution is controlled in such a way that locally superlinear or even quadratic rate of convergence of the SQP is ensured. Numerical examples illustrate the efficiency for the proposed approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Optimal control, inexact SQP method, proper orthogonal decomposition, a-posteriori error estimates, bilinear elliptic equation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAHLBACHER, Martin, Stefan VOLKWEIN, 2011. POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems. In: ESAIM: Mathematical Modelling and Numerical Analysis. 2011, 46(2), pp. 491-511. ISSN 0764-583X. Available under: doi: 10.1051/m2an/2011061
BibTex
@article{Kahlbacher2011apost-18558,
  year={2011},
  doi={10.1051/m2an/2011061},
  title={POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems},
  number={2},
  volume={46},
  issn={0764-583X},
  journal={ESAIM: Mathematical Modelling and Numerical Analysis},
  pages={491--511},
  author={Kahlbacher, Martin and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18558">
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18558/1/Volkwein.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18558/1/Volkwein.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dc:contributor>Kahlbacher, Martin</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T12:09:03Z</dcterms:available>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:title>POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T12:09:03Z</dc:date>
    <dcterms:abstract xml:lang="eng">An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch and Volkwein [Comput. Opt. Appl. 44 (2009) 83–115] the difference of the suboptimal to the (unknown) optimal solution of the linear-quadratic subproblem is estimated. Hence, the inexactness of the discrete solution is controlled in such a way that locally superlinear or even quadratic rate of convergence of the SQP is ensured. Numerical examples illustrate the efficiency for the proposed approach.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kahlbacher, Martin</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: ESAIM : Mathematical Modelling and Numerical Analysis ; 46 (2012), 2. - pp. 491-511</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18558"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen