Publikation: POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch and Volkwein [Comput. Opt. Appl. 44 (2009) 83–115] the difference of the suboptimal to the (unknown) optimal solution of the linear-quadratic subproblem is estimated. Hence, the inexactness of the discrete solution is controlled in such a way that locally superlinear or even quadratic rate of convergence of the SQP is ensured. Numerical examples illustrate the efficiency for the proposed approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAHLBACHER, Martin, Stefan VOLKWEIN, 2011. POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems. In: ESAIM: Mathematical Modelling and Numerical Analysis. 2011, 46(2), pp. 491-511. ISSN 0764-583X. Available under: doi: 10.1051/m2an/2011061BibTex
@article{Kahlbacher2011apost-18558, year={2011}, doi={10.1051/m2an/2011061}, title={POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems}, number={2}, volume={46}, issn={0764-583X}, journal={ESAIM: Mathematical Modelling and Numerical Analysis}, pages={491--511}, author={Kahlbacher, Martin and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18558"> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18558/1/Volkwein.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18558/1/Volkwein.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Kahlbacher, Martin</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T12:09:03Z</dcterms:available> <dcterms:issued>2011</dcterms:issued> <dcterms:title>POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T12:09:03Z</dc:date> <dcterms:abstract xml:lang="eng">An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch and Volkwein [Comput. Opt. Appl. 44 (2009) 83–115] the difference of the suboptimal to the (unknown) optimal solution of the linear-quadratic subproblem is estimated. Hence, the inexactness of the discrete solution is controlled in such a way that locally superlinear or even quadratic rate of convergence of the SQP is ensured. Numerical examples illustrate the efficiency for the proposed approach.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kahlbacher, Martin</dc:creator> <dcterms:bibliographicCitation>First publ. in: ESAIM : Mathematical Modelling and Numerical Analysis ; 46 (2012), 2. - pp. 491-511</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18558"/> </rdf:Description> </rdf:RDF>