Publikation:

Search bias quantification : investigating political bias in social media and web search

Lade...
Vorschaubild

Dateien

Kulshrestha_2-1sg245pluj22y1.pdf
Kulshrestha_2-1sg245pluj22y1.pdfGröße: 1.35 MBDownloads: 307

Datum

2019

Autor:innen

Eslami, Motahhare
Messias, Johnnatan
Zafar, Muhammad Bilal
Ghosh, Saptarshi
Gummadi, Krishna P.
Karahalios, Karrie

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information Retrieval Journal. Springer Science+Business Media B.V.. 2019, 22(1-2), pp. 188-227. ISSN 1386-4564. eISSN 1573-7659. Available under: doi: 10.1007/s10791-018-9341-2

Zusammenfassung

Users frequently use search systems on the Web as well as online social media to learn about ongoing events and public opinion on personalities. Prior studies have shown that the top-ranked results returned by these search engines can shape user opinion about the topic (e.g., event or person) being searched. In case of polarizing topics like politics, where multiple competing perspectives exist, the political bias in the top search results can play a significant role in shaping public opinion towards (or away from) certain perspectives. Given the considerable impact that search bias can have on the user, we propose a generalizable search bias quantification framework that not only measures the political bias in ranked list output by the search system but also decouples the bias introduced by the different sources—input data and ranking system. We apply our framework to study the political bias in searches related to 2016 US Presidential primaries in Twitter social media search and find that both input data and ranking system matter in determining the final search output bias seen by the users. And finally, we use the framework to compare the relative bias for two popular search systems—Twitter social media search and Google web search—for queries related to politicians and political events. We end by discussing some potential solutions to signal the bias in the search results to make the users more aware of them.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Search bias, Search bias quantification, Sources of search bias, Social media search, Web search, Political bias inference

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KULSHRESTHA, Juhi, Motahhare ESLAMI, Johnnatan MESSIAS, Muhammad Bilal ZAFAR, Saptarshi GHOSH, Krishna P. GUMMADI, Karrie KARAHALIOS, 2019. Search bias quantification : investigating political bias in social media and web search. In: Information Retrieval Journal. Springer Science+Business Media B.V.. 2019, 22(1-2), pp. 188-227. ISSN 1386-4564. eISSN 1573-7659. Available under: doi: 10.1007/s10791-018-9341-2
BibTex
@article{Kulshrestha2019-04Searc-53924,
  year={2019},
  doi={10.1007/s10791-018-9341-2},
  title={Search bias quantification : investigating political bias in social media and web search},
  number={1-2},
  volume={22},
  issn={1386-4564},
  journal={Information Retrieval Journal},
  pages={188--227},
  author={Kulshrestha, Juhi and Eslami, Motahhare and Messias, Johnnatan and Zafar, Muhammad Bilal and Ghosh, Saptarshi and Gummadi, Krishna P. and Karahalios, Karrie}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53924">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53924/1/Kulshrestha_2-1sg245pluj22y1.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53924/1/Kulshrestha_2-1sg245pluj22y1.pdf"/>
    <dc:contributor>Kulshrestha, Juhi</dc:contributor>
    <dc:creator>Gummadi, Krishna P.</dc:creator>
    <dc:creator>Zafar, Muhammad Bilal</dc:creator>
    <dc:contributor>Messias, Johnnatan</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T09:14:37Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53924"/>
    <dc:contributor>Eslami, Motahhare</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Ghosh, Saptarshi</dc:creator>
    <dc:creator>Messias, Johnnatan</dc:creator>
    <dc:contributor>Karahalios, Karrie</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Zafar, Muhammad Bilal</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Eslami, Motahhare</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ghosh, Saptarshi</dc:contributor>
    <dc:creator>Kulshrestha, Juhi</dc:creator>
    <dc:creator>Karahalios, Karrie</dc:creator>
    <dc:contributor>Gummadi, Krishna P.</dc:contributor>
    <dcterms:issued>2019-04</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Users frequently use search systems on the Web as well as online social media to learn about ongoing events and public opinion on personalities. Prior studies have shown that the top-ranked results returned by these search engines can shape user opinion about the topic (e.g., event or person) being searched. In case of polarizing topics like politics, where multiple competing perspectives exist, the political bias in the top search results can play a significant role in shaping public opinion towards (or away from) certain perspectives. Given the considerable impact that search bias can have on the user, we propose a generalizable search bias quantification framework that not only measures the political bias in ranked list output by the search system but also decouples the bias introduced by the different sources—input data and ranking system. We apply our framework to study the political bias in searches related to 2016 US Presidential primaries in Twitter social media search and find that both input data and ranking system matter in determining the final search output bias seen by the users. And finally, we use the framework to compare the relative bias for two popular search systems—Twitter social media search and Google web search—for queries related to politicians and political events. We end by discussing some potential solutions to signal the bias in the search results to make the users more aware of them.</dcterms:abstract>
    <dcterms:title>Search bias quantification : investigating political bias in social media and web search</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T09:14:37Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen