Publikation: Quasi-ordered rings : A uniform approach to orderings and valuations
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Communications in Algebra. 2018, 46(11), pp. 4978-4984. ISSN 0092-7872. eISSN 1532-4125. Available under: doi: 10.1080/00927872.2018.1459651
Zusammenfassung
A quasi-order on a set S is a binary, reflexive and transitive relation on S. In [3 Fakhruddin, S. M. (1987). Quasi-ordered fields. J. Pure Appl. Algebra 45:207–210.[Crossref], [Web of Science ®], [Google Scholar]], Fakhruddin introduced the notion of (totally) quasi-ordered fields and showed that each such field is either an ordered field or else a valued field. Hence, quasi-ordered fields are very well suited to treat ordered and valued fields simultaneously. The aim of the present paper is to prove that an analogous dichotomy holds for commutative rings with 1 as well.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Commutative rings, ordered rings, quasi-orders, real algebra, valued rings
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MÜLLER, Simon, 2018. Quasi-ordered rings : A uniform approach to orderings and valuations. In: Communications in Algebra. 2018, 46(11), pp. 4978-4984. ISSN 0092-7872. eISSN 1532-4125. Available under: doi: 10.1080/00927872.2018.1459651BibTex
@article{Muller2018Quasi-43510, year={2018}, doi={10.1080/00927872.2018.1459651}, title={Quasi-ordered rings : A uniform approach to orderings and valuations}, number={11}, volume={46}, issn={0092-7872}, journal={Communications in Algebra}, pages={4978--4984}, author={Müller, Simon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43510"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-12T09:39:14Z</dc:date> <dcterms:title>Quasi-ordered rings : A uniform approach to orderings and valuations</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43510"/> <dc:contributor>Müller, Simon</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2018</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Müller, Simon</dc:creator> <dcterms:abstract xml:lang="eng">A quasi-order on a set S is a binary, reflexive and transitive relation on S. In [3 Fakhruddin, S. M. (1987). Quasi-ordered fields. J. Pure Appl. Algebra 45:207–210.[Crossref], [Web of Science ®], [Google Scholar]], Fakhruddin introduced the notion of (totally) quasi-ordered fields and showed that each such field is either an ordered field or else a valued field. Hence, quasi-ordered fields are very well suited to treat ordered and valued fields simultaneously. The aim of the present paper is to prove that an analogous dichotomy holds for commutative rings with 1 as well.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-12T09:39:14Z</dcterms:available> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Unbekannt