Task-based Visual Interactive Modeling : Decision Trees and Rule-based Classifiers

Loading...
Thumbnail Image
Date
2021
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
IEEE Transactions on Visualization and Computer Graphics (T-VCG) ; 2021. - IEEE. - ISSN 1077-2626. - eISSN 1941-0506
Abstract
Visual analytics enables the coupling of machine learning models and humans in a tightly integrated workflow, addressing various analysis tasks. Each task poses distinct demands to analysts and decision-makers. In this survey, we focus on one canonical technique for rule-based classification, namely decision tree classifiers. We provide an overview of available visualizations for decision trees with a focus on how visualizations differ with respect to 16 tasks. Further, we investigate the types of visual designs employed, and the quality measures presented. We find that (i) interactive visual analytics systems for classifier development offer a variety of visual designs, (ii) utilization tasks are sparsely covered, (iii) beyond classifier development, node-link diagrams are omnipresent, (iv) even systems designed for machine learning experts rarely feature visual representations of quality measures other than accuracy. In conclusion, we see a potential for integrating algorithmic techniques, mathematical quality measures, and tailored interactive visualizations to enable human experts to utilize their knowledge more effectively.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Decision Trees, Rule-based Classification, Visual Analytics, Interactive Machine Learning, Interactive Model Analysis, Survey, Visualization
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690STREEB, Dirk, Yannick METZ, Udo SCHLEGEL, Bruno SCHNEIDER, Mennatallah EL-ASSADY, Hansjörg NETH, Min CHEN, Daniel A. KEIM, 2021. Task-based Visual Interactive Modeling : Decision Trees and Rule-based Classifiers. In: IEEE Transactions on Visualization and Computer Graphics (T-VCG). IEEE. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3045560
BibTex
@article{Streeb2021-01-13Taskb-53075,
  year={2021},
  doi={10.1109/TVCG.2020.3045560},
  title={Task-based Visual Interactive Modeling : Decision Trees and Rule-based Classifiers},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics (T-VCG)},
  author={Streeb, Dirk and Metz, Yannick and Schlegel, Udo and Schneider, Bruno and El-Assady, Mennatallah and Neth, Hansjörg and Chen, Min and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53075">
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Streeb, Dirk</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53075/1/Streeb_2-1smjgfpk1i8ax9.pdf"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T08:52:26Z</dc:date>
    <dcterms:title>Task-based Visual Interactive Modeling : Decision Trees and Rule-based Classifiers</dcterms:title>
    <dc:creator>Metz, Yannick</dc:creator>
    <dc:creator>Chen, Min</dc:creator>
    <dc:creator>Neth, Hansjörg</dc:creator>
    <dc:creator>Streeb, Dirk</dc:creator>
    <dc:contributor>Schneider, Bruno</dc:contributor>
    <dc:contributor>Neth, Hansjörg</dc:contributor>
    <dcterms:issued>2021-01-13</dcterms:issued>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53075/1/Streeb_2-1smjgfpk1i8ax9.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T08:52:26Z</dcterms:available>
    <dc:creator>Schneider, Bruno</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Chen, Min</dc:contributor>
    <dcterms:abstract xml:lang="eng">Visual analytics enables the coupling of machine learning models and humans in a tightly integrated workflow, addressing various analysis tasks. Each task poses distinct demands to analysts and decision-makers. In this survey, we focus on one canonical technique for rule-based classification, namely decision tree classifiers. We provide an overview of available visualizations for decision trees with a focus on how visualizations differ with respect to 16 tasks. Further, we investigate the types of visual designs employed, and the quality measures presented. We find that (i) interactive visual analytics systems for classifier development offer a variety of visual designs, (ii) utilization tasks are sparsely covered, (iii) beyond classifier development, node-link diagrams are omnipresent, (iv) even systems designed for machine learning experts rarely feature visual representations of quality measures other than accuracy. In conclusion, we see a potential for integrating algorithmic techniques, mathematical quality measures, and tailored interactive visualizations to enable human experts to utilize their knowledge more effectively.</dcterms:abstract>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53075"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes

Version History

Now showing 1 - 1 of 1
VersionDateSummary
1*
2021-03-05 08:52:26
* Selected version