Publikation: Task-based Visual Interactive Modeling : Decision Trees and Rule-based Classifiers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual analytics enables the coupling of machine learning models and humans in a tightly integrated workflow, addressing various analysis tasks. Each task poses distinct demands to analysts and decision-makers. In this survey, we focus on one canonical technique for rule-based classification, namely decision tree classifiers. We provide an overview of available visualizations for decision trees with a focus on how visualizations differ with respect to 16 tasks. Further, we investigate the types of visual designs employed, and the quality measures presented. We find that (i) interactive visual analytics systems for classifier development offer a variety of visual designs, (ii) utilization tasks are sparsely covered, (iii) beyond classifier development, node-link diagrams are omnipresent, (iv) even systems designed for machine learning experts rarely feature visual representations of quality measures other than accuracy. In conclusion, we see a potential for integrating algorithmic techniques, mathematical quality measures, and tailored interactive visualizations to enable human experts to utilize their knowledge more effectively.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STREEB, Dirk, Yannick METZ, Udo SCHLEGEL, Bruno SCHNEIDER, Mennatallah EL-ASSADY, Hansjörg NETH, Min CHEN, Daniel A. KEIM, 2021. Task-based Visual Interactive Modeling : Decision Trees and Rule-based Classifiers. In: IEEE Transactions on Visualization and Computer Graphics (T-VCG). IEEE. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3045560BibTex
@article{Streeb2021-01-13Taskb-53075, year={2021}, doi={10.1109/TVCG.2020.3045560}, title={Task-based Visual Interactive Modeling : Decision Trees and Rule-based Classifiers}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics (T-VCG)}, author={Streeb, Dirk and Metz, Yannick and Schlegel, Udo and Schneider, Bruno and El-Assady, Mennatallah and Neth, Hansjörg and Chen, Min and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53075"> <dc:contributor>Schlegel, Udo</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Streeb, Dirk</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53075/1/Streeb_2-1smjgfpk1i8ax9.pdf"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Metz, Yannick</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T08:52:26Z</dc:date> <dcterms:title>Task-based Visual Interactive Modeling : Decision Trees and Rule-based Classifiers</dcterms:title> <dc:creator>Metz, Yannick</dc:creator> <dc:creator>Chen, Min</dc:creator> <dc:creator>Neth, Hansjörg</dc:creator> <dc:creator>Streeb, Dirk</dc:creator> <dc:contributor>Schneider, Bruno</dc:contributor> <dc:contributor>Neth, Hansjörg</dc:contributor> <dcterms:issued>2021-01-13</dcterms:issued> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Schlegel, Udo</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53075/1/Streeb_2-1smjgfpk1i8ax9.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T08:52:26Z</dcterms:available> <dc:creator>Schneider, Bruno</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Chen, Min</dc:contributor> <dcterms:abstract xml:lang="eng">Visual analytics enables the coupling of machine learning models and humans in a tightly integrated workflow, addressing various analysis tasks. Each task poses distinct demands to analysts and decision-makers. In this survey, we focus on one canonical technique for rule-based classification, namely decision tree classifiers. We provide an overview of available visualizations for decision trees with a focus on how visualizations differ with respect to 16 tasks. Further, we investigate the types of visual designs employed, and the quality measures presented. We find that (i) interactive visual analytics systems for classifier development offer a variety of visual designs, (ii) utilization tasks are sparsely covered, (iii) beyond classifier development, node-link diagrams are omnipresent, (iv) even systems designed for machine learning experts rarely feature visual representations of quality measures other than accuracy. In conclusion, we see a potential for integrating algorithmic techniques, mathematical quality measures, and tailored interactive visualizations to enable human experts to utilize their knowledge more effectively.</dcterms:abstract> <dc:contributor>Keim, Daniel A.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53075"/> </rdf:Description> </rdf:RDF>