Publikation:

Visual Analytics of Conversational Dynamics

Lade...
Vorschaubild

Dateien

Seebacher_2-1snexapci9d0a9.pdf
Seebacher_2-1snexapci9d0a9.pdfGröße: 146.39 KBDownloads: 121

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 700381

Projekt

ASGARD - Analysis System For Gathered Raw Data
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

VON LANDESBERGER, Tatiana, ed., Cagatay TURKAY, ed.. EuroVis Workshop on Visual Analytics (EuroVA). Genf: The Eurographics Association, 2019. ISBN 978-3-03868-087-1. Available under: doi: 10.2312/eurova.20191130

Zusammenfassung

Large-scale interaction networks of human communication are often modeled as complex graph structures, obscuring temporal patterns within individual conversations. To facilitate the understanding of such conversational dynamics, episodes with low or high communication activity as well as breaks in communication need to be detected to enable the identification of temporal interaction patterns. Traditional episode detection approaches are highly dependent on the choice of parameters, such as window-size or binning-resolution. In this paper, we present a novel technique for the identification of relevant episodes in bi-directional interaction sequences from abstract communication networks. We model communication as a continuous density function, allowing for a more robust segmentation into individual episodes and estimation of communication volume. Additionally, we define a tailored feature set to characterize conversational dynamics and enable a user-steered classification of communication behavior. We apply our technique to a real-world corpus of email data from a large European research institution. The results show that our technique allows users to effectively define, identify, and analyze relevant communication episodes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

EuroVis Workshop on Visual Analytics (EuroVA), 3. Juni 2019, Porto, Portugal
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SEEBACHER, Daniel, Maximilian T. FISCHER, Rita SEVASTJANOVA, Daniel A. KEIM, Mennatallah EL-ASSADY, 2019. Visual Analytics of Conversational Dynamics. EuroVis Workshop on Visual Analytics (EuroVA). Porto, Portugal, 3. Juni 2019. In: VON LANDESBERGER, Tatiana, ed., Cagatay TURKAY, ed.. EuroVis Workshop on Visual Analytics (EuroVA). Genf: The Eurographics Association, 2019. ISBN 978-3-03868-087-1. Available under: doi: 10.2312/eurova.20191130
BibTex
@inproceedings{Seebacher2019Visua-46437,
  year={2019},
  doi={10.2312/eurova.20191130},
  title={Visual Analytics of Conversational Dynamics},
  isbn={978-3-03868-087-1},
  publisher={The Eurographics Association},
  address={Genf},
  booktitle={EuroVis Workshop on Visual Analytics (EuroVA)},
  editor={von Landesberger, Tatiana and Turkay, Cagatay},
  author={Seebacher, Daniel and Fischer, Maximilian T. and Sevastjanova, Rita and Keim, Daniel A. and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46437">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46437/1/Seebacher_2-1snexapci9d0a9.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46437"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-17T13:35:00Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Fischer, Maximilian T.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Large-scale interaction networks of human communication are often modeled as complex graph structures, obscuring temporal patterns within individual conversations. To facilitate the understanding of such conversational dynamics, episodes with low or high communication activity as well as breaks in communication need to be detected to enable the identification of temporal interaction patterns. Traditional episode detection approaches are highly dependent on the choice of parameters, such as window-size or binning-resolution. In this paper, we present a novel technique for the identification of relevant episodes in bi-directional interaction sequences from abstract communication networks. We model communication as a continuous density function, allowing for a more robust segmentation into individual episodes and estimation of communication volume. Additionally, we define a tailored feature set to characterize conversational dynamics and enable a user-steered classification of communication behavior. We apply our technique to a real-world corpus of email data from a large European research institution. The results show that our technique allows users to effectively define, identify, and analyze relevant communication episodes.</dcterms:abstract>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-17T13:35:00Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46437/1/Seebacher_2-1snexapci9d0a9.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Visual Analytics of Conversational Dynamics</dcterms:title>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:contributor>Fischer, Maximilian T.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen