Visual Analytics of Conversational Dynamics

Lade...
Vorschaubild
Dateien
Seebacher_2-1snexapci9d0a9.pdf
Seebacher_2-1snexapci9d0a9.pdfGröße: 146.39 KBDownloads: 114
Datum
2019
Autor:innen
Fischer, Maximilian T.
Sevastjanova, Rita
Keim, Daniel A.
El-Assady, Mennatallah
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 700381
Projekt
ASGARD - Analysis System For Gathered Raw Data
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
VON LANDESBERGER, Tatiana, ed., Cagatay TURKAY, ed.. EuroVis Workshop on Visual Analytics (EuroVA). Genf: The Eurographics Association, 2019. ISBN 978-3-03868-087-1. Available under: doi: 10.2312/eurova.20191130
Zusammenfassung

Large-scale interaction networks of human communication are often modeled as complex graph structures, obscuring temporal patterns within individual conversations. To facilitate the understanding of such conversational dynamics, episodes with low or high communication activity as well as breaks in communication need to be detected to enable the identification of temporal interaction patterns. Traditional episode detection approaches are highly dependent on the choice of parameters, such as window-size or binning-resolution. In this paper, we present a novel technique for the identification of relevant episodes in bi-directional interaction sequences from abstract communication networks. We model communication as a continuous density function, allowing for a more robust segmentation into individual episodes and estimation of communication volume. Additionally, we define a tailored feature set to characterize conversational dynamics and enable a user-steered classification of communication behavior. We apply our technique to a real-world corpus of email data from a large European research institution. The results show that our technique allows users to effectively define, identify, and analyze relevant communication episodes.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
EuroVis Workshop on Visual Analytics (EuroVA), 3. Juni 2019, Porto, Portugal
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SEEBACHER, Daniel, Maximilian T. FISCHER, Rita SEVASTJANOVA, Daniel A. KEIM, Mennatallah EL-ASSADY, 2019. Visual Analytics of Conversational Dynamics. EuroVis Workshop on Visual Analytics (EuroVA). Porto, Portugal, 3. Juni 2019. In: VON LANDESBERGER, Tatiana, ed., Cagatay TURKAY, ed.. EuroVis Workshop on Visual Analytics (EuroVA). Genf: The Eurographics Association, 2019. ISBN 978-3-03868-087-1. Available under: doi: 10.2312/eurova.20191130
BibTex
@inproceedings{Seebacher2019Visua-46437,
  year={2019},
  doi={10.2312/eurova.20191130},
  title={Visual Analytics of Conversational Dynamics},
  isbn={978-3-03868-087-1},
  publisher={The Eurographics Association},
  address={Genf},
  booktitle={EuroVis Workshop on Visual Analytics (EuroVA)},
  editor={von Landesberger, Tatiana and Turkay, Cagatay},
  author={Seebacher, Daniel and Fischer, Maximilian T. and Sevastjanova, Rita and Keim, Daniel A. and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46437">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46437/1/Seebacher_2-1snexapci9d0a9.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46437"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-17T13:35:00Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Fischer, Maximilian T.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Large-scale interaction networks of human communication are often modeled as complex graph structures, obscuring temporal patterns within individual conversations. To facilitate the understanding of such conversational dynamics, episodes with low or high communication activity as well as breaks in communication need to be detected to enable the identification of temporal interaction patterns. Traditional episode detection approaches are highly dependent on the choice of parameters, such as window-size or binning-resolution. In this paper, we present a novel technique for the identification of relevant episodes in bi-directional interaction sequences from abstract communication networks. We model communication as a continuous density function, allowing for a more robust segmentation into individual episodes and estimation of communication volume. Additionally, we define a tailored feature set to characterize conversational dynamics and enable a user-steered classification of communication behavior. We apply our technique to a real-world corpus of email data from a large European research institution. The results show that our technique allows users to effectively define, identify, and analyze relevant communication episodes.</dcterms:abstract>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-17T13:35:00Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46437/1/Seebacher_2-1snexapci9d0a9.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Visual Analytics of Conversational Dynamics</dcterms:title>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:contributor>Fischer, Maximilian T.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen