Publikation: Bender Decomposition for LPs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This thesis investigates the application of Benders decomposition to the Uncapacitated Facility Location Problem (UFLP), a pivotal optimization challenge in logistics and network design. Benders decomposition, introduced by J.F. Benders in 1962, is a technique that partitions large-scale optimization problems into a master problem and smaller, more manageable subproblems. This approach facilitates the solution of complex linear and mixed-integer programming problems by iteratively refining the master problem with feasibility and optimality cuts derived from subproblem solutions.
The UFLP focuses on determining the optimal placement of facilities to minimize total costs associated with facility establishment and customer allocation. This thesis provides a comprehensive exploration of the theoretical foundations of Benders decomposition, including key concepts in linear programming, dual problems, and the geometric properties of feasible regions. The core methodology involves the iterative solution of subproblems to generate constraints that progressively guide the master problem toward optimality.
A practical implementation of Benders decomposition is developed using Python and the Gurobi solver. The effectiveness of this implementation is evaluated by solving instances of the UFLP, with performance comparisons made against Gurobi’s direct solution method. The results reveal that while Benders decomposition exhibits superior scalability for larger problem instances, its computational efficiency may lag behind direct methods for smaller cases. This highlights the trade-off between decomposition methods and direct optimization techniques in terms of speed and scalability.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NGUYEN, Phi Long, 2024. Bender Decomposition for LPs [Bachelorarbeit]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Nguyen2024-12-16Bende-71776, year={2024}, title={Bender Decomposition for LPs}, address={Konstanz}, school={Universität Konstanz}, author={Nguyen, Phi Long} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71776"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71776/4/Nguyen_2-1so4ayzmu04u23.pdf"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Nguyen, Phi Long</dc:creator> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-07T07:37:06Z</dcterms:available> <dcterms:title>Bender Decomposition for LPs</dcterms:title> <dc:contributor>Nguyen, Phi Long</dc:contributor> <dcterms:abstract>This thesis investigates the application of Benders decomposition to the Uncapacitated Facility Location Problem (UFLP), a pivotal optimization challenge in logistics and network design. Benders decomposition, introduced by J.F. Benders in 1962, is a technique that partitions large-scale optimization problems into a master problem and smaller, more manageable subproblems. This approach facilitates the solution of complex linear and mixed-integer programming problems by iteratively refining the master problem with feasibility and optimality cuts derived from subproblem solutions. The UFLP focuses on determining the optimal placement of facilities to minimize total costs associated with facility establishment and customer allocation. This thesis provides a comprehensive exploration of the theoretical foundations of Benders decomposition, including key concepts in linear programming, dual problems, and the geometric properties of feasible regions. The core methodology involves the iterative solution of subproblems to generate constraints that progressively guide the master problem toward optimality. A practical implementation of Benders decomposition is developed using Python and the Gurobi solver. The effectiveness of this implementation is evaluated by solving instances of the UFLP, with performance comparisons made against Gurobi’s direct solution method. The results reveal that while Benders decomposition exhibits superior scalability for larger problem instances, its computational efficiency may lag behind direct methods for smaller cases. This highlights the trade-off between decomposition methods and direct optimization techniques in terms of speed and scalability.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71776"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71776/4/Nguyen_2-1so4ayzmu04u23.pdf"/> <dcterms:issued>2024-12-16</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-07T07:37:06Z</dc:date> </rdf:Description> </rdf:RDF>