Publikation: Commercial Visual Analytics Systems : Advances in the Big Data Analytics Field
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems' roadmaps in the coming years.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BEHRISCH, Michael, Dirk STREEB, Florian STOFFEL, Daniel SEEBACHER, Brian MATEJEK, Stefan Hagen WEBER, Sebastian MITTELSTÄDT, Hanspeter PFISTER, Daniel A. KEIM, 2019. Commercial Visual Analytics Systems : Advances in the Big Data Analytics Field. In: IEEE Transactions on Visualization and Computer Graphics (T-VCG). 2019, 25(10), pp. 3011-3031. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2859973BibTex
@article{Behrisch2019-10-01Comme-43055, year={2019}, doi={10.1109/TVCG.2018.2859973}, title={Commercial Visual Analytics Systems : Advances in the Big Data Analytics Field}, number={10}, volume={25}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics (T-VCG)}, pages={3011--3031}, author={Behrisch, Michael and Streeb, Dirk and Stoffel, Florian and Seebacher, Daniel and Matejek, Brian and Weber, Stefan Hagen and Mittelstädt, Sebastian and Pfister, Hanspeter and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43055"> <dc:creator>Streeb, Dirk</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43055/1/Behrisch_2-1spqy2jnfjfzv2.pdf"/> <dc:contributor>Behrisch, Michael</dc:contributor> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:creator>Behrisch, Michael</dc:creator> <dc:contributor>Matejek, Brian</dc:contributor> <dc:contributor>Streeb, Dirk</dc:contributor> <dc:creator>Weber, Stefan Hagen</dc:creator> <dc:contributor>Stoffel, Florian</dc:contributor> <dcterms:issued>2019-10-01</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-09T13:10:35Z</dcterms:available> <dc:creator>Pfister, Hanspeter</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-09T13:10:35Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Matejek, Brian</dc:creator> <dcterms:title>Commercial Visual Analytics Systems : Advances in the Big Data Analytics Field</dcterms:title> <dc:contributor>Mittelstädt, Sebastian</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43055/1/Behrisch_2-1spqy2jnfjfzv2.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43055"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Seebacher, Daniel</dc:creator> <dcterms:abstract xml:lang="eng">Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems' roadmaps in the coming years.</dcterms:abstract> <dc:contributor>Pfister, Hanspeter</dc:contributor> <dc:contributor>Weber, Stefan Hagen</dc:contributor> <dc:creator>Mittelstädt, Sebastian</dc:creator> <dc:creator>Stoffel, Florian</dc:creator> </rdf:Description> </rdf:RDF>