Publikation: Sequential quadratic programming method for volatility estimation in option pricing
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2008
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Optimization Theory and Applications. 2008, 139(3), pp. 515-540. ISSN 0022-3239. Available under: doi: 10.1007/s10957-008-9404-4
Zusammenfassung
Our goal is to identify the volatility function in Dupire’s equation from given option prices. Following an optimal control approach in a Lagrangian framework, a globalized sequential quadratic programming (SQP) algorithm combined with a primal-dual active set strategy is proposed. Existence of local optimal solutions and of Lagrange multipliers is shown. Furthermore, a sufficient second-order optimality condition is proved. Finally, some numerical results are presented underlining the good properties of the numerical scheme.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Dupire equation, Parameter identification, Optimal control, Optimality conditions, SQP method, Primal-dual active set strategy
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
DÜRING, Bertram, Ansgar JÜNGEL, Stefan VOLKWEIN, 2008. Sequential quadratic programming method for volatility estimation in option pricing. In: Journal of Optimization Theory and Applications. 2008, 139(3), pp. 515-540. ISSN 0022-3239. Available under: doi: 10.1007/s10957-008-9404-4BibTex
@article{During2008Seque-18664, year={2008}, doi={10.1007/s10957-008-9404-4}, title={Sequential quadratic programming method for volatility estimation in option pricing}, number={3}, volume={139}, issn={0022-3239}, journal={Journal of Optimization Theory and Applications}, pages={515--540}, author={Düring, Bertram and Jüngel, Ansgar and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18664"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Jüngel, Ansgar</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Sequential quadratic programming method for volatility estimation in option pricing</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2008</dcterms:issued> <dc:contributor>Düring, Bertram</dc:contributor> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>Publ. in: Journal of Optimization Theory and Applications ; 139 (2008), 3. - pp. 515-540</dcterms:bibliographicCitation> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-28T10:19:04Z</dcterms:available> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-28T10:19:04Z</dc:date> <dc:creator>Jüngel, Ansgar</dc:creator> <dcterms:abstract xml:lang="eng">Our goal is to identify the volatility function in Dupire’s equation from given option prices. Following an optimal control approach in a Lagrangian framework, a globalized sequential quadratic programming (SQP) algorithm combined with a primal-dual active set strategy is proposed. Existence of local optimal solutions and of Lagrange multipliers is shown. Furthermore, a sufficient second-order optimality condition is proved. Finally, some numerical results are presented underlining the good properties of the numerical scheme.</dcterms:abstract> <dc:creator>Düring, Bertram</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18664"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein