Publikation:

KonVid-150k : A Dataset for No-Reference Video Quality Assessment of Videos in-the-Wild

Lade...
Vorschaubild

Dateien

Goetz-Hahn_2-1t0bmybzek49b5.pdf
Goetz-Hahn_2-1t0bmybzek49b5.pdfGröße: 2.77 MBDownloads: 253

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Access. IEEE. 2021, 9, pp. 72139-72160. eISSN 2169-3536. Available under: doi: 10.1109/ACCESS.2021.3077642

Zusammenfassung

Video quality assessment (VQA) methods focus on particular degradation types, usually artificially induced on a small set of reference videos. Hence, most traditional VQA methods under-perform in-the-wild. Deep learning approaches have had limited success due to the small size and diversity of existing VQA datasets, either artificial or authentically distorted. We introduce a new in-the-wild VQA dataset that is substantially larger and diverse: KonVid-150k. It consists of a coarsely annotated set of 153,841 videos having five quality ratings each, and 1,596 videos with a minimum of 89 ratings each. Additionally, we propose new efficient VQA approaches (MLSP-VQA) relying on multi-level spatially pooled deep-features (MLSP). They are exceptionally well suited for training at scale, compared to deep transfer learning approaches. Our best method, MLSP-VQA-FF, improves the Spearman rank-order correlation coefficient (SRCC) performance metric on the commonly used KoNViD-1k in-the-wild benchmark dataset to 0.82. It surpasses the best existing deep-learning model (0.80 SRCC) and hand-crafted feature-based method (0.78 SRCC). We further investigate how alternative approaches perform under different levels of label noise, and dataset size, showing that MLSP-VQA-FF is the overall best method for videos in-the-wild. Finally, we show that the MLSP-VQA models trained on KonVid-150k sets the new state-of-the-art for cross-test performance on KoNViD-1k and LIVE-Qualcomm with a 0.83 and 0.64 SRCC, respectively. For KoNViD-1k this inter-dataset testing outperforms intra-dataset experiments, showing excellent generalization.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Datasets, deep transfer learning, multi-level spatially-pooled features, video quality assessment, video quality dataset

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GÖTZ-HAHN, Franz, Vlad HOSU, Hanhe LIN, Dietmar SAUPE, 2021. KonVid-150k : A Dataset for No-Reference Video Quality Assessment of Videos in-the-Wild. In: IEEE Access. IEEE. 2021, 9, pp. 72139-72160. eISSN 2169-3536. Available under: doi: 10.1109/ACCESS.2021.3077642
BibTex
@article{GotzHahn2021KonVi-53766,
  year={2021},
  doi={10.1109/ACCESS.2021.3077642},
  title={KonVid-150k : A Dataset for No-Reference Video Quality Assessment of Videos in-the-Wild},
  volume={9},
  journal={IEEE Access},
  pages={72139--72160},
  author={Götz-Hahn, Franz and Hosu, Vlad and Lin, Hanhe and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53766">
    <dcterms:issued>2021</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53766/1/Goetz-Hahn_2-1t0bmybzek49b5.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53766"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53766/1/Goetz-Hahn_2-1t0bmybzek49b5.pdf"/>
    <dcterms:abstract xml:lang="eng">Video quality assessment (VQA) methods focus on particular degradation types, usually artificially induced on a small set of reference videos. Hence, most traditional VQA methods under-perform in-the-wild. Deep learning approaches have had limited success due to the small size and diversity of existing VQA datasets, either artificial or authentically distorted. We introduce a new in-the-wild VQA dataset that is substantially larger and diverse: KonVid-150k. It consists of a coarsely annotated set of 153,841 videos having five quality ratings each, and 1,596 videos with a minimum of 89 ratings each. Additionally, we propose new efficient VQA approaches (MLSP-VQA) relying on multi-level spatially pooled deep-features (MLSP). They are exceptionally well suited for training at scale, compared to deep transfer learning approaches. Our best method, MLSP-VQA-FF, improves the Spearman rank-order correlation coefficient (SRCC) performance metric on the commonly used KoNViD-1k in-the-wild benchmark dataset to 0.82. It surpasses the best existing deep-learning model (0.80 SRCC) and hand-crafted feature-based method (0.78 SRCC). We further investigate how alternative approaches perform under different levels of label noise, and dataset size, showing that MLSP-VQA-FF is the overall best method for videos in-the-wild. Finally, we show that the MLSP-VQA models trained on KonVid-150k sets the new state-of-the-art for cross-test performance on KoNViD-1k and LIVE-Qualcomm with a 0.83 and 0.64 SRCC, respectively. For KoNViD-1k this inter-dataset testing outperforms intra-dataset experiments, showing excellent generalization.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:title>KonVid-150k : A Dataset for No-Reference Video Quality Assessment of Videos in-the-Wild</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-27T09:36:18Z</dcterms:available>
    <dc:creator>Götz-Hahn, Franz</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dc:contributor>Götz-Hahn, Franz</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-27T09:36:18Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen