Publikation: Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the nacre or aragonite layer of the mollusk shell, proteomes that regulate both the early stages of nucleation and nano-to-mesoscale assembly of nacre tablets from mineral nanoparticle precursors exist. Several approaches have been developed to understand protein-associated mechanisms of nacre formation, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two nacre-associated proteins, C-RING AP7 (shell nacre, Haliotis rufescens) and pseudo-EF hand PFMG1 (oyster pearl nacre, Pinctada fucata), whose individual in vitro mineralization functionalities are well-documented and distinct from one another. Using scanning electron microscopy, flow cell scanning transmission electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that both nacre proteins are functionally active within the same mineralization environments and, at 1:1 molar ratios, synergistically create calcium carbonate mesoscale structures with ordered intracrystalline nanoporosities, extensively prolong nucleation times, and introduce an additional nucleation event. Further, these two proteins jointly create nanoscale protein aggregates or phases that under mineralization conditions further assemble into protein-mineral polymer-induced liquid precursor-like phases with enhanced ACC stabilization capabilities, and there is evidence of intermolecular interactions between AP7 and PFMG1 under these conditions. Thus, a combinatorial model system consisting of more than one defined biomineralization protein dramatically changes the outcome of the in vitro biomineralization process.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHANG, Eric P., Teresa RONCAL-HERRERO, Tamara MORGAN, Katherine E. DUNN, Ashit RAO, Jennie A. M. R. KUNITAKE, Susan LUI, Matthew BILTON, Helmut CÖLFEN, John Spencer EVANS, 2016. Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System. In: Biochemistry. 2016, 55(16), pp. 2401-2410. ISSN 0006-2960. eISSN 1520-4995. Available under: doi: 10.1021/acs.biochem.6b00163BibTex
@article{Chang2016-04-26Syner-34534, year={2016}, doi={10.1021/acs.biochem.6b00163}, title={Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System}, number={16}, volume={55}, issn={0006-2960}, journal={Biochemistry}, pages={2401--2410}, author={Chang, Eric P. and Roncal-Herrero, Teresa and Morgan, Tamara and Dunn, Katherine E. and Rao, Ashit and Kunitake, Jennie A. M. R. and Lui, Susan and Bilton, Matthew and Cölfen, Helmut and Evans, John Spencer} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34534"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Roncal-Herrero, Teresa</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34534"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-06-24T13:06:39Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Chang, Eric P.</dc:creator> <dc:creator>Lui, Susan</dc:creator> <dc:creator>Rao, Ashit</dc:creator> <dc:creator>Kunitake, Jennie A. M. R.</dc:creator> <dcterms:abstract xml:lang="eng">In the nacre or aragonite layer of the mollusk shell, proteomes that regulate both the early stages of nucleation and nano-to-mesoscale assembly of nacre tablets from mineral nanoparticle precursors exist. Several approaches have been developed to understand protein-associated mechanisms of nacre formation, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two nacre-associated proteins, C-RING AP7 (shell nacre, Haliotis rufescens) and pseudo-EF hand PFMG1 (oyster pearl nacre, Pinctada fucata), whose individual in vitro mineralization functionalities are well-documented and distinct from one another. Using scanning electron microscopy, flow cell scanning transmission electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that both nacre proteins are functionally active within the same mineralization environments and, at 1:1 molar ratios, synergistically create calcium carbonate mesoscale structures with ordered intracrystalline nanoporosities, extensively prolong nucleation times, and introduce an additional nucleation event. Further, these two proteins jointly create nanoscale protein aggregates or phases that under mineralization conditions further assemble into protein-mineral polymer-induced liquid precursor-like phases with enhanced ACC stabilization capabilities, and there is evidence of intermolecular interactions between AP7 and PFMG1 under these conditions. Thus, a combinatorial model system consisting of more than one defined biomineralization protein dramatically changes the outcome of the in vitro biomineralization process.</dcterms:abstract> <dc:contributor>Kunitake, Jennie A. M. R.</dc:contributor> <dc:contributor>Chang, Eric P.</dc:contributor> <dc:contributor>Lui, Susan</dc:contributor> <dc:creator>Cölfen, Helmut</dc:creator> <dc:contributor>Cölfen, Helmut</dc:contributor> <dcterms:issued>2016-04-26</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-06-24T13:06:39Z</dcterms:available> <dc:contributor>Bilton, Matthew</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Bilton, Matthew</dc:creator> <dc:creator>Roncal-Herrero, Teresa</dc:creator> <dc:contributor>Evans, John Spencer</dc:contributor> <dc:contributor>Dunn, Katherine E.</dc:contributor> <dc:contributor>Rao, Ashit</dc:contributor> <dc:contributor>Morgan, Tamara</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Dunn, Katherine E.</dc:creator> <dc:creator>Morgan, Tamara</dc:creator> <dcterms:title>Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System</dcterms:title> <dc:creator>Evans, John Spencer</dc:creator> </rdf:Description> </rdf:RDF>