Publikation:

An exact duality theory for semidefinite programming based on sums of squares

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematics of Operations Research. 2013, 38(3), pp. 569-590. ISSN 0364-765X. eISSN 1526-5471. Available under: doi: 10.1287/moor.1120.0584

Zusammenfassung

Farkas' lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A linear matrix inequality A(x) >_ 0 is infeasible if and only if −1 lies in the quadratic module associated to A. We also present a new exact duality theory for semidefinite programming, motivated by the real radical and sums of squares certificates from real algebraic geometry.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

linear matrix inequality, LMI, spectrahedron, semidefinite programming, SDP, quadratic module, infeasibility, duality theory, real radical, Farkas' lemma

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHWEIGHOFER, Markus, Igor KLEP, 2013. An exact duality theory for semidefinite programming based on sums of squares. In: Mathematics of Operations Research. 2013, 38(3), pp. 569-590. ISSN 0364-765X. eISSN 1526-5471. Available under: doi: 10.1287/moor.1120.0584
BibTex
@article{Schweighofer2013exact-24805,
  year={2013},
  doi={10.1287/moor.1120.0584},
  title={An exact duality theory for semidefinite programming based on sums of squares},
  number={3},
  volume={38},
  issn={0364-765X},
  journal={Mathematics of Operations Research},
  pages={569--590},
  author={Schweighofer, Markus and Klep, Igor}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24805">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24805"/>
    <dcterms:abstract xml:lang="eng">Farkas' lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A linear matrix inequality A(x) &gt;_ 0 is infeasible if and only if −1 lies in the quadratic module associated to A. We also present a new exact duality theory for semidefinite programming, motivated by the real radical and sums of squares certificates from real algebraic geometry.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:title>An exact duality theory for semidefinite programming based on sums of squares</dcterms:title>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <dcterms:bibliographicCitation>Mathematics of Operations Research ;  38 (2013), 3. - S. 569-590</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-11T14:29:51Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-11T14:29:51Z</dcterms:available>
    <dc:creator>Klep, Igor</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <dc:contributor>Klep, Igor</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen