Publikation: Diverse Teams Tend to do Good Work in Wikipedia (but Jacks of All Trades Don't)
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We define network-based indicators of diversity for Wikipedia teams and users. A team of Wikipedia contributors is diverse to the extent that its members edit different articles. An individual contributor is a “jack of all trades” to the extent that she edits articles that are rarely co-edited by the same other users. For both indicators of team and individual diversity we propose a model-based normalization in which we compare observed values to expected values in a random graph model that preserves expected degrees of users and articles. Using data on all articles in the English-language edition of Wikipedia, we show that diverse teams tend to write high-quality articles, but articles written by teams containing jack of all trades contributors tend to be of lower quality. These findings are robust to several alternative explanations for article quality. We also show that the proposed model-based normalization of network indicators outperforms an ad-hoc normalization via cosine similarity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LERNER, Jürgen, Alessandro LOMI, 2018. Diverse Teams Tend to do Good Work in Wikipedia (but Jacks of All Trades Don't). 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Barcelona, 28. Aug. 2018 - 31. Aug. 2018. In: BRANDES, Ulrik, ed. and others. Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Piscataway, NJ: IEEE, 2018, pp. 214-221. ISBN 978-1-5386-6051-5. Available under: doi: 10.1109/ASONAM.2018.8508597BibTex
@inproceedings{Lerner2018-08Diver-44874, year={2018}, doi={10.1109/ASONAM.2018.8508597}, title={Diverse Teams Tend to do Good Work in Wikipedia (but Jacks of All Trades Don't)}, isbn={978-1-5386-6051-5}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)}, pages={214--221}, editor={Brandes, Ulrik}, author={Lerner, Jürgen and Lomi, Alessandro} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44874"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44874"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Diverse Teams Tend to do Good Work in Wikipedia (but Jacks of All Trades Don't)</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Lerner, Jürgen</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We define network-based indicators of diversity for Wikipedia teams and users. A team of Wikipedia contributors is diverse to the extent that its members edit different articles. An individual contributor is a “jack of all trades” to the extent that she edits articles that are rarely co-edited by the same other users. For both indicators of team and individual diversity we propose a model-based normalization in which we compare observed values to expected values in a random graph model that preserves expected degrees of users and articles. Using data on all articles in the English-language edition of Wikipedia, we show that diverse teams tend to write high-quality articles, but articles written by teams containing jack of all trades contributors tend to be of lower quality. These findings are robust to several alternative explanations for article quality. We also show that the proposed model-based normalization of network indicators outperforms an ad-hoc normalization via cosine similarity.</dcterms:abstract> <dc:contributor>Lomi, Alessandro</dc:contributor> <dcterms:issued>2018-08</dcterms:issued> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-06T14:05:39Z</dcterms:available> <dc:creator>Lomi, Alessandro</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-06T14:05:39Z</dc:date> <dc:contributor>Lerner, Jürgen</dc:contributor> </rdf:Description> </rdf:RDF>