Publikation: Polyelectrolyte-Directed Nanoparticle Aggregation : Systematic Morphogenesis of Calcium Carbonate by Nonclassical Crystallization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Besides the classical atom/ion/molecule based mechanism, nonclassical crystallization provides a nanoparticle-based crystallization pathway toward single crystals. However, there is a lack of experimentally established strategies for engineering a range of crystalline microstructures from common nanoparticles by nonclassical crystallization. We demonstrate that a commercial random copolymer polyelectrolyte poly(4-styrene sulfonate)-co-(maleic acid) (PSS-co-MA) considerably guides crystallization of calcium carbonate (CC) with a high versatility. The bioinspired nonclassical crystallization protocol yielded a series of calcite microstructures. Calcite single crystals obtained at low supersaturation show a pseudo-dodecahedral shape with curved faces, whereas increasing supersaturation generated calcite mesocrystals with pseudo-octahedral shapes and scalloped surfaces. Further increase of supersaturation induced the formation of polycrystalline multilayered and hollow spheres. In the initial growth stage of all these microstructures, amorphous CC nanoparticles formed as the early product. Remarkably, microparticles with minimal primitive (P)-surface were captured as the prominent intermediate indicative of liquidlike behavior. Moreover, nanogranular structures exist broadly in the as-synthesized crystals. These results demonstrate that the polyelectrolyte can effectively stabilize the amorphous CC nanoparticle precursors, impart control over the evolution from amorphous precursors via a liquid aggregate through P-surface intermediates to the final crystals, and thus allow the morphogenesis. Simple variation of calcium and polyeletrolyte concentrations enables a systematic control over the size and morphology of particles among pseudo-dodecahedra, pseudo-octahedra, multilayered spheres, and hollow spheres, which are expressed in a morphology diagram. A unifying nanoparticle aggregation formation mechanism was suggested to explain the morphogenesis by the combination of nonclassical crystallization and surface area minimization principles.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SONG, Rui-Qi, Helmut CÖLFEN, An-Wu XU, Jürgen HARTMANN, Markus ANTONIETTI, 2009. Polyelectrolyte-Directed Nanoparticle Aggregation : Systematic Morphogenesis of Calcium Carbonate by Nonclassical Crystallization. In: ACS Nano. 2009, 3(7), pp. 1966-1978. ISSN 1936-0851. eISSN 1936-086X. Available under: doi: 10.1021/nn900377dBibTex
@article{Song2009-07-28Polye-40145, year={2009}, doi={10.1021/nn900377d}, title={Polyelectrolyte-Directed Nanoparticle Aggregation : Systematic Morphogenesis of Calcium Carbonate by Nonclassical Crystallization}, number={7}, volume={3}, issn={1936-0851}, journal={ACS Nano}, pages={1966--1978}, author={Song, Rui-Qi and Cölfen, Helmut and Xu, An-Wu and Hartmann, Jürgen and Antonietti, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40145"> <dc:creator>Hartmann, Jürgen</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Antonietti, Markus</dc:contributor> <dc:creator>Antonietti, Markus</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40145"/> <dc:creator>Song, Rui-Qi</dc:creator> <dc:creator>Cölfen, Helmut</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-09-21T09:35:24Z</dcterms:available> <dcterms:abstract xml:lang="eng">Besides the classical atom/ion/molecule based mechanism, nonclassical crystallization provides a nanoparticle-based crystallization pathway toward single crystals. However, there is a lack of experimentally established strategies for engineering a range of crystalline microstructures from common nanoparticles by nonclassical crystallization. We demonstrate that a commercial random copolymer polyelectrolyte poly(4-styrene sulfonate)-co-(maleic acid) (PSS-co-MA) considerably guides crystallization of calcium carbonate (CC) with a high versatility. The bioinspired nonclassical crystallization protocol yielded a series of calcite microstructures. Calcite single crystals obtained at low supersaturation show a pseudo-dodecahedral shape with curved faces, whereas increasing supersaturation generated calcite mesocrystals with pseudo-octahedral shapes and scalloped surfaces. Further increase of supersaturation induced the formation of polycrystalline multilayered and hollow spheres. In the initial growth stage of all these microstructures, amorphous CC nanoparticles formed as the early product. Remarkably, microparticles with minimal primitive (P)-surface were captured as the prominent intermediate indicative of liquidlike behavior. Moreover, nanogranular structures exist broadly in the as-synthesized crystals. These results demonstrate that the polyelectrolyte can effectively stabilize the amorphous CC nanoparticle precursors, impart control over the evolution from amorphous precursors via a liquid aggregate through P-surface intermediates to the final crystals, and thus allow the morphogenesis. Simple variation of calcium and polyeletrolyte concentrations enables a systematic control over the size and morphology of particles among pseudo-dodecahedra, pseudo-octahedra, multilayered spheres, and hollow spheres, which are expressed in a morphology diagram. A unifying nanoparticle aggregation formation mechanism was suggested to explain the morphogenesis by the combination of nonclassical crystallization and surface area minimization principles.</dcterms:abstract> <dcterms:issued>2009-07-28</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Cölfen, Helmut</dc:contributor> <dc:contributor>Xu, An-Wu</dc:contributor> <dc:contributor>Song, Rui-Qi</dc:contributor> <dc:creator>Xu, An-Wu</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-09-21T09:35:24Z</dc:date> <dcterms:title>Polyelectrolyte-Directed Nanoparticle Aggregation : Systematic Morphogenesis of Calcium Carbonate by Nonclassical Crystallization</dcterms:title> <dc:contributor>Hartmann, Jürgen</dc:contributor> </rdf:Description> </rdf:RDF>