Marginal and Dependence Uncertainty : Bounds, Optimal Transport, and Sharpness
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Motivated by applications in model-free finance and quantitative risk management, we consider Fréchet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal transport duality results for these Fréchet classes that extend previous results in the related literature. These proofs are based on representation results for convex increasing functionals and the explicit computation of the conjugates. We show that the dual transport problem admits an explicit solution for the function $f=1_B$, where $B$ is a rectangular subset of $\mathbb{R}^d$, and provide an intuitive geometric interpretation of this result. The improved Fréchet--Hoeffding bounds provide ad hoc bounds for these Fréchet classes. We show that the improved Fréchet--Hoeffding bounds are pointwise sharp for these classes in the presence of uncertainty in the marginals, while a counterexample yields that they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2. The latter result sheds new light on the improved Fréchet--Hoeffding bounds, since Tankov [J. Appl. Probab., 48 (2011), pp. 389--403] has showed that, under certain conditions, these bounds are sharp in dimension 2.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTL, Daniel, Michael KUPPER, Thibaut LUX, Antonis PAPAPANTOLEON, Stephan ECKSTEIN, 2022. Marginal and Dependence Uncertainty : Bounds, Optimal Transport, and Sharpness. In: SIAM Journal on Control and Optimization. SIAM. 2022, 60(1), pp. 140-434. ISSN 0887-4603. eISSN 1095-7138. Available under: doi: 10.1137/21M144709XBibTex
@article{Bartl2022Margi-55473.2, year={2022}, doi={10.1137/21M144709X}, title={Marginal and Dependence Uncertainty : Bounds, Optimal Transport, and Sharpness}, number={1}, volume={60}, issn={0887-4603}, journal={SIAM Journal on Control and Optimization}, pages={140--434}, author={Bartl, Daniel and Kupper, Michael and Lux, Thibaut and Papapantoleon, Antonis and Eckstein, Stephan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55473.2"> <dc:contributor>Kupper, Michael</dc:contributor> <dc:contributor>Lux, Thibaut</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Lux, Thibaut</dc:creator> <dc:contributor>Bartl, Daniel</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Marginal and Dependence Uncertainty : Bounds, Optimal Transport, and Sharpness</dcterms:title> <dc:creator>Bartl, Daniel</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55473.2"/> <dcterms:issued>2022</dcterms:issued> <dc:contributor>Eckstein, Stephan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Papapantoleon, Antonis</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-24T10:37:25Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-24T10:37:25Z</dc:date> <dc:creator>Kupper, Michael</dc:creator> <dc:contributor>Papapantoleon, Antonis</dc:contributor> <dcterms:abstract xml:lang="eng">Motivated by applications in model-free finance and quantitative risk management, we consider Fréchet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal transport duality results for these Fréchet classes that extend previous results in the related literature. These proofs are based on representation results for convex increasing functionals and the explicit computation of the conjugates. We show that the dual transport problem admits an explicit solution for the function $f=1_B$, where $B$ is a rectangular subset of $\mathbb{R}^d$, and provide an intuitive geometric interpretation of this result. The improved Fréchet--Hoeffding bounds provide ad hoc bounds for these Fréchet classes. We show that the improved Fréchet--Hoeffding bounds are pointwise sharp for these classes in the presence of uncertainty in the marginals, while a counterexample yields that they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2. The latter result sheds new light on the improved Fréchet--Hoeffding bounds, since Tankov [J. Appl. Probab., 48 (2011), pp. 389--403] has showed that, under certain conditions, these bounds are sharp in dimension 2.</dcterms:abstract> <dc:creator>Eckstein, Stephan</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>