Publikation: Quantum communication networks with defects in silicon carbide
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Quantum communication promises unprecedented communication capabilities enabled by the transmission of quantum states of light. However, current implementations face severe limitations in communication distance due to photon loss. Silicon carbide (SiC) defects have emerged as a promising quantum device platform, offering strong optical transitions, long spin coherence lifetimes and the opportunity for integration with semiconductor devices. Some defects with optical transitions in the telecom range have been identified, allowing to interface with fiber networks without the need for wavelength conversion. These unique properties make SiC an attractive platform for the implementation of quantum nodes for quantum communication networks. We provide an overview of the most prominent defects in SiC and their implementation in spin-photon interfaces. Furthermore, we model a memory-enhanced quantum communication protocol in order to extract the parameters required to surpass a direct point-to-point link performance. Based on these insights, we summarize the key steps required towards the deployment of SiC devices in large-scale quantum communication networks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ECKER, Sebastian, Matthias FINK, Thomas SCHEIDL, Philipp SOHR, Rupert URSIN, Muhammad Junaid ARSHAD, Cristian BONATO, Guido BURKARD, Benedikt TISSOT, Michael TRUPKE, 2024. Quantum communication networks with defects in silicon carbideBibTex
@unpublished{Ecker2024Quant-71309, year={2024}, doi={10.48550/arXiv.2403.03284}, title={Quantum communication networks with defects in silicon carbide}, author={Ecker, Sebastian and Fink, Matthias and Scheidl, Thomas and Sohr, Philipp and Ursin, Rupert and Arshad, Muhammad Junaid and Bonato, Cristian and Burkard, Guido and Tissot, Benedikt and Trupke, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71309"> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>Bonato, Cristian</dc:creator> <dc:creator>Ursin, Rupert</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Arshad, Muhammad Junaid</dc:creator> <dc:contributor>Bonato, Cristian</dc:contributor> <dc:contributor>Tissot, Benedikt</dc:contributor> <dcterms:title>Quantum communication networks with defects in silicon carbide</dcterms:title> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2024</dcterms:issued> <dc:creator>Scheidl, Thomas</dc:creator> <dc:contributor>Arshad, Muhammad Junaid</dc:contributor> <dc:contributor>Ursin, Rupert</dc:contributor> <dc:contributor>Trupke, Michael</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71309"/> <dc:contributor>Scheidl, Thomas</dc:contributor> <dc:contributor>Fink, Matthias</dc:contributor> <dcterms:abstract>Quantum communication promises unprecedented communication capabilities enabled by the transmission of quantum states of light. However, current implementations face severe limitations in communication distance due to photon loss. Silicon carbide (SiC) defects have emerged as a promising quantum device platform, offering strong optical transitions, long spin coherence lifetimes and the opportunity for integration with semiconductor devices. Some defects with optical transitions in the telecom range have been identified, allowing to interface with fiber networks without the need for wavelength conversion. These unique properties make SiC an attractive platform for the implementation of quantum nodes for quantum communication networks. We provide an overview of the most prominent defects in SiC and their implementation in spin-photon interfaces. Furthermore, we model a memory-enhanced quantum communication protocol in order to extract the parameters required to surpass a direct point-to-point link performance. Based on these insights, we summarize the key steps required towards the deployment of SiC devices in large-scale quantum communication networks.</dcterms:abstract> <dc:creator>Ecker, Sebastian</dc:creator> <dc:contributor>Sohr, Philipp</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-18T13:15:34Z</dc:date> <dc:creator>Sohr, Philipp</dc:creator> <dc:creator>Trupke, Michael</dc:creator> <dc:contributor>Ecker, Sebastian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Burkard, Guido</dc:creator> <dc:creator>Fink, Matthias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-18T13:15:34Z</dcterms:available> <dc:creator>Tissot, Benedikt</dc:creator> </rdf:Description> </rdf:RDF>