Publikation:

Computational Structuralism

Lade...
Vorschaubild

Dateien

Halbach_2-1tea2qdbfb6c44.pdf
Halbach_2-1tea2qdbfb6c44.pdfGröße: 164.08 KBDownloads: 97

Datum

2005

Autor:innen

Halbach, Volker

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Philosophia Mathematica. Oxford University Press (OUP). 2005, 13(2), pp. 174-186. ISSN 0031-8019. eISSN 1744-6406. Available under: doi: 10.1093/philmat/nki021

Zusammenfassung

According to structuralism in philosophy of mathematics, arithmetic is about a single structure. First-order theories are satisfied by (nonstandard) models that do not instantiate this structure. Proponents of structuralism have put forward various accounts of how we succeed in fixing one single structure as the intended interpretation of our arithmetical language. We shall look at a proposal that involves Tennenbaum's theorem, which says that any model with addition and multiplication as recursive operations is isomorphic to the standard model of arithmetic. On this account, the intended models of arithmetic are the notation systems with recursive operations on them satisfying the Peano axioms.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HALBACH, Volker, Leon HORSTEN, 2005. Computational Structuralism. In: Philosophia Mathematica. Oxford University Press (OUP). 2005, 13(2), pp. 174-186. ISSN 0031-8019. eISSN 1744-6406. Available under: doi: 10.1093/philmat/nki021
BibTex
@article{Halbach2005Compu-56727,
  year={2005},
  doi={10.1093/philmat/nki021},
  title={Computational Structuralism},
  number={2},
  volume={13},
  issn={0031-8019},
  journal={Philosophia Mathematica},
  pages={174--186},
  author={Halbach, Volker and Horsten, Leon}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56727">
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56727/3/Halbach_2-1tea2qdbfb6c44.pdf"/>
    <dcterms:abstract xml:lang="eng">According to structuralism in philosophy of mathematics, arithmetic is about a single structure. First-order theories are satisfied by (nonstandard) models that do not instantiate this structure. Proponents of structuralism have put forward various accounts of how we succeed in fixing one single structure as the intended interpretation of our arithmetical language. We shall look at a proposal that involves Tennenbaum's theorem, which says that any model with addition and multiplication as recursive operations is isomorphic to the standard model of arithmetic. On this account, the intended models of arithmetic are the notation systems with recursive operations on them satisfying the Peano axioms.</dcterms:abstract>
    <dc:contributor>Halbach, Volker</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56727"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-02T15:54:09Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-02T15:54:09Z</dc:date>
    <dcterms:title>Computational Structuralism</dcterms:title>
    <dc:creator>Halbach, Volker</dc:creator>
    <dc:creator>Horsten, Leon</dc:creator>
    <dcterms:issued>2005</dcterms:issued>
    <dc:contributor>Horsten, Leon</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56727/3/Halbach_2-1tea2qdbfb6c44.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen