Publikation:

Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood

Lade...
Vorschaubild

Dateien

Calzolari_290148.pdf
Calzolari_290148.pdfGröße: 138.59 KBDownloads: 497

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computational Statistics & Data Analysis. 2014, 76, pp. 158-171. ISSN 0167-9473. eISSN 1872-7352. Available under: doi: 10.1016/j.csda.2013.07.028

Zusammenfassung

Financial returns exhibit conditional heteroscedasticity, asymmetric responses of their volatility to negative and positive returns (leverage effects) and fat tails. The αα-stable distribution is a natural candidate for capturing the tail-thickness of the conditional distribution of financial returns, while the GARCH-type models are very popular in depicting the conditional heteroscedasticity and leverage effects. However, practical implementation of αα-stable distribution in finance applications has been limited by its estimation difficulties. The performance of the indirect inference approach using GARCH models with Student’s tt distributed errors as auxiliary models is compared to the maximum likelihood approach for estimating GARCH-type models with symmetric αα-stable innovations. It is shown that the expected efficiency gains of the maximum likelihood approach come at high computational costs compared to the indirect inference method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Symmetric α-stable distribution, GARCH-type models, Indirect inference, Maximum likelihood, Leverage effects, Student’s t distribution

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CALZOLARI, Giorgio, Roxana CHIRIAC, Alessandro PARRINI, 2014. Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood. In: Computational Statistics & Data Analysis. 2014, 76, pp. 158-171. ISSN 0167-9473. eISSN 1872-7352. Available under: doi: 10.1016/j.csda.2013.07.028
BibTex
@article{Calzolari2014Estim-29014,
  year={2014},
  doi={10.1016/j.csda.2013.07.028},
  title={Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood},
  volume={76},
  issn={0167-9473},
  journal={Computational Statistics & Data Analysis},
  pages={158--171},
  author={Calzolari, Giorgio and Chiriac, Roxana and Parrini, Alessandro}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29014">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29014"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:title>Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29014/2/Calzolari_290148.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29014/2/Calzolari_290148.pdf"/>
    <dcterms:bibliographicCitation>Computational statistics &amp; data analysis ; 76 (2014). - S. 158-171</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Parrini, Alessandro</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-23T09:55:00Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Calzolari, Giorgio</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Financial returns exhibit conditional heteroscedasticity, asymmetric responses of their volatility to negative and positive returns (leverage effects) and fat tails. The αα-stable distribution is a natural candidate for capturing the tail-thickness of the conditional distribution of financial returns, while the GARCH-type models are very popular in depicting the conditional heteroscedasticity and leverage effects. However, practical implementation of αα-stable distribution in finance applications has been limited by its estimation difficulties. The performance of the indirect inference approach using GARCH models with Student’s tt distributed errors as auxiliary models is compared to the maximum likelihood approach for estimating GARCH-type models with symmetric αα-stable innovations. It is shown that the expected efficiency gains of the maximum likelihood approach come at high computational costs compared to the indirect inference method.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Calzolari, Giorgio</dc:contributor>
    <dc:contributor>Chiriac, Roxana</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-23T09:55:00Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Chiriac, Roxana</dc:creator>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Parrini, Alessandro</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen