Recognizable sets and Woodin cardinals : Computation beyond the constructible universe

No Thumbnail Available
Files
There are no files associated with this item.
Date
2018
Authors
Schlicht, Philipp
Welch, Philip
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Annals of Pure and Applied Logic ; 169 (2018), 4. - pp. 312-332. - ISSN 0168-0072. - eISSN 1873-2461
Abstract
We call a subset of an ordinal λrecognizableif it is the unique subset xof λfor which some Turing machine with ordinal time and tape and an ordinal parameter, that halts for all subsets of λas input, halts with the final state 0. Equivalently, such a set is the unique subset xwhich satisfies a given Σ1formula in L[x]. We further define the recognizable closurefor subsets of λ by closing under relative recognizability for subsets of λ.


We prove several results about recognizable sets and their variants for other types of machines. Notably, we show the following results from large cardinals.

•Recognizable sets of ordinals appear in the hierarchy of inner models at least up to the level Woodin cardinals, while computable sets are elements of L.

•A subset of a countable ordinal λis in the recognizable closure for subsets of countable ordinals if and only if it is an element of the inner model M, which is obtained by iterating the least measure of the least fine structural inner model M1with a Woodin cardinal through the ordinals.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Infinite time Turing machines; Algorithmic randomness; Effective descriptive set theory; Woodin cardinals; Inner models
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690CARL, Merlin, Philipp SCHLICHT, Philip WELCH, 2018. Recognizable sets and Woodin cardinals : Computation beyond the constructible universe. In: Annals of Pure and Applied Logic. 169(4), pp. 312-332. ISSN 0168-0072. eISSN 1873-2461. Available under: doi: 10.1016/j.apal.2017.12.007
BibTex
@article{Carl2018Recog-32698.2,
  year={2018},
  doi={10.1016/j.apal.2017.12.007},
  title={Recognizable sets and Woodin cardinals : Computation beyond the constructible universe},
  number={4},
  volume={169},
  issn={0168-0072},
  journal={Annals of Pure and Applied Logic},
  pages={312--332},
  author={Carl, Merlin and Schlicht, Philipp and Welch, Philip}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32698.2">
    <dc:contributor>Carl, Merlin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schlicht, Philipp</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T13:41:57Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Recognizable sets and Woodin cardinals : Computation beyond the constructible universe</dcterms:title>
    <dcterms:issued>2018</dcterms:issued>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T13:41:57Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32698.2"/>
    <dc:creator>Welch, Philip</dc:creator>
    <dc:contributor>Schlicht, Philipp</dc:contributor>
    <dc:creator>Carl, Merlin</dc:creator>
    <dc:contributor>Welch, Philip</dc:contributor>
    <dcterms:abstract xml:lang="eng">We call a subset of an ordinal λrecognizableif it is the unique subset xof λfor which some Turing machine with ordinal time and tape and an ordinal parameter, that halts for all subsets of λas input, halts with the final state 0. Equivalently, such a set is the unique subset xwhich satisfies a given Σ&lt;sub&gt;1&lt;/sub&gt;formula in L[x]. We further define the recognizable closurefor subsets of λ by closing under relative recognizability for subsets of λ.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;We prove several results about recognizable sets and their variants for other types of machines. Notably, we show the following results from large cardinals.&lt;br /&gt;&lt;br /&gt;•Recognizable sets of ordinals appear in the hierarchy of inner models at least up to the level Woodin cardinals, while computable sets are elements of L.&lt;br /&gt;&lt;br /&gt;•A subset of a countable ordinal λis in the recognizable closure for subsets of countable ordinals if and only if it is an element of the inner model M&lt;sup&gt;∞&lt;/sup&gt;, which is obtained by iterating the least measure of the least fine structural inner model M&lt;sub&gt;1&lt;/sub&gt;with a Woodin cardinal through the ordinals.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2018-02-05 08:51:51
2016-01-25 13:57:54
* Selected version