Publikation:

Recognizable sets and Woodin cardinals : Computation beyond the constructible universe

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Schlicht, Philipp
Welch, Philip

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Annals of Pure and Applied Logic. 2018, 169(4), pp. 312-332. ISSN 0168-0072. eISSN 1873-2461. Available under: doi: 10.1016/j.apal.2017.12.007

Zusammenfassung

We call a subset of an ordinal λrecognizableif it is the unique subset xof λfor which some Turing machine with ordinal time and tape and an ordinal parameter, that halts for all subsets of λas input, halts with the final state 0. Equivalently, such a set is the unique subset xwhich satisfies a given Σ1formula in L[x]. We further define the recognizable closurefor subsets of λ by closing under relative recognizability for subsets of λ.


We prove several results about recognizable sets and their variants for other types of machines. Notably, we show the following results from large cardinals.

•Recognizable sets of ordinals appear in the hierarchy of inner models at least up to the level Woodin cardinals, while computable sets are elements of L.

•A subset of a countable ordinal λis in the recognizable closure for subsets of countable ordinals if and only if it is an element of the inner model M, which is obtained by iterating the least measure of the least fine structural inner model M1with a Woodin cardinal through the ordinals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Infinite time Turing machines; Algorithmic randomness; Effective descriptive set theory; Woodin cardinals; Inner models

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CARL, Merlin, Philipp SCHLICHT, Philip WELCH, 2018. Recognizable sets and Woodin cardinals : Computation beyond the constructible universe. In: Annals of Pure and Applied Logic. 2018, 169(4), pp. 312-332. ISSN 0168-0072. eISSN 1873-2461. Available under: doi: 10.1016/j.apal.2017.12.007
BibTex
@article{Carl2018Recog-32698.2,
  year={2018},
  doi={10.1016/j.apal.2017.12.007},
  title={Recognizable sets and Woodin cardinals : Computation beyond the constructible universe},
  number={4},
  volume={169},
  issn={0168-0072},
  journal={Annals of Pure and Applied Logic},
  pages={312--332},
  author={Carl, Merlin and Schlicht, Philipp and Welch, Philip}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32698.2">
    <dc:contributor>Carl, Merlin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schlicht, Philipp</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T13:41:57Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Recognizable sets and Woodin cardinals : Computation beyond the constructible universe</dcterms:title>
    <dcterms:issued>2018</dcterms:issued>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T13:41:57Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32698.2"/>
    <dc:creator>Welch, Philip</dc:creator>
    <dc:contributor>Schlicht, Philipp</dc:contributor>
    <dc:creator>Carl, Merlin</dc:creator>
    <dc:contributor>Welch, Philip</dc:contributor>
    <dcterms:abstract xml:lang="eng">We call a subset of an ordinal λrecognizableif it is the unique subset xof λfor which some Turing machine with ordinal time and tape and an ordinal parameter, that halts for all subsets of λas input, halts with the final state 0. Equivalently, such a set is the unique subset xwhich satisfies a given Σ&lt;sub&gt;1&lt;/sub&gt;formula in L[x]. We further define the recognizable closurefor subsets of λ by closing under relative recognizability for subsets of λ.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;We prove several results about recognizable sets and their variants for other types of machines. Notably, we show the following results from large cardinals.&lt;br /&gt;&lt;br /&gt;•Recognizable sets of ordinals appear in the hierarchy of inner models at least up to the level Woodin cardinals, while computable sets are elements of L.&lt;br /&gt;&lt;br /&gt;•A subset of a countable ordinal λis in the recognizable closure for subsets of countable ordinals if and only if it is an element of the inner model M&lt;sup&gt;∞&lt;/sup&gt;, which is obtained by iterating the least measure of the least fine structural inner model M&lt;sub&gt;1&lt;/sub&gt;with a Woodin cardinal through the ordinals.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2018-02-05 08:51:51
2016-01-25 13:57:54
* Ausgewählte Version