Publikation: Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities.
The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STEIGER, Martin, Jürgen BERNARD, Sebastian MITTELSTÄDT, Hendrik LÜCKE-TIEKE, Daniel A. KEIM, Thorsten MAY, Jörn KOHLHAMMER, 2014. Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks. In: Computer Graphics Forum. 2014, 33(3), pp. 401-410. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12396BibTex
@article{Steiger2014Visua-29865, year={2014}, doi={10.1111/cgf.12396}, title={Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks}, number={3}, volume={33}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={401--410}, author={Steiger, Martin and Bernard, Jürgen and Mittelstädt, Sebastian and Lücke-Tieke, Hendrik and Keim, Daniel A. and May, Thorsten and Kohlhammer, Jörn} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29865"> <dc:contributor>Lücke-Tieke, Hendrik</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-18T19:24:16Z</dcterms:available> <dc:creator>Lücke-Tieke, Hendrik</dc:creator> <dc:contributor>Steiger, Martin</dc:contributor> <dc:contributor>May, Thorsten</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:abstract xml:lang="eng">We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities.<br /><br />The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29865/1/Steiger_0-263650.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2014</dcterms:issued> <dc:creator>Mittelstädt, Sebastian</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Kohlhammer, Jörn</dc:creator> <dc:creator>Bernard, Jürgen</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>May, Thorsten</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-18T19:24:16Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Kohlhammer, Jörn</dc:contributor> <dc:contributor>Mittelstädt, Sebastian</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29865"/> <dcterms:title>Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Bernard, Jürgen</dc:contributor> <dc:creator>Steiger, Martin</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29865/1/Steiger_0-263650.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>