Publikation:

Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks

Lade...
Vorschaubild

Dateien

Steiger_0-263650.pdf
Steiger_0-263650.pdfGröße: 1.54 MBDownloads: 1539

Datum

2014

Autor:innen

Steiger, Martin
Bernard, Jürgen
Lücke-Tieke, Hendrik
May, Thorsten
Kohlhammer, Jörn

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2014, 33(3), pp. 401-410. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12396

Zusammenfassung

We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities.

The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Categories and Subject Descriptors (according to ACM CCS):, I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction techniques, H.5.2 [Information Interfaces and Presentation]: User Interfaces—User-centered design, C.2.3 [Computer-Communication Networks]: Network Operations—Network monitoring

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STEIGER, Martin, Jürgen BERNARD, Sebastian MITTELSTÄDT, Hendrik LÜCKE-TIEKE, Daniel A. KEIM, Thorsten MAY, Jörn KOHLHAMMER, 2014. Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks. In: Computer Graphics Forum. 2014, 33(3), pp. 401-410. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12396
BibTex
@article{Steiger2014Visua-29865,
  year={2014},
  doi={10.1111/cgf.12396},
  title={Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks},
  number={3},
  volume={33},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={401--410},
  author={Steiger, Martin and Bernard, Jürgen and Mittelstädt, Sebastian and Lücke-Tieke, Hendrik and Keim, Daniel A. and May, Thorsten and Kohlhammer, Jörn}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29865">
    <dc:contributor>Lücke-Tieke, Hendrik</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-18T19:24:16Z</dcterms:available>
    <dc:creator>Lücke-Tieke, Hendrik</dc:creator>
    <dc:contributor>Steiger, Martin</dc:contributor>
    <dc:contributor>May, Thorsten</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:abstract xml:lang="eng">We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities.&lt;br /&gt;&lt;br /&gt;The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29865/1/Steiger_0-263650.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Mittelstädt, Sebastian</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kohlhammer, Jörn</dc:creator>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>May, Thorsten</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-18T19:24:16Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Kohlhammer, Jörn</dc:contributor>
    <dc:contributor>Mittelstädt, Sebastian</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29865"/>
    <dcterms:title>Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dc:creator>Steiger, Martin</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29865/1/Steiger_0-263650.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen