Publikation:

Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics

Lade...
Vorschaubild

Dateien

Puetz_0-283460.pdf
Puetz_0-283460.pdfGröße: 4.34 MBDownloads: 737

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review E. 2015, 91(3), 032303. ISSN 1539-3755. eISSN 1550-2376. Available under: doi: 10.1103/PhysRevE.91.032303

Zusammenfassung

We present a numerical method for simulations of spinodal decomposition of liquid-vapor systems. The results are in excellent agreement with theoretical predictions for all expected time regimes from the initial growth of “homophase fluctuations” up to the inertial hydrodynamics regime. The numerical approach follows a modern formulation of the smoothed particle hydrodynamics method with a van der Waals equation of state and thermal conduction. The dynamics and thermal evolution of instantaneously temperature-quenched systems are investigated. Therefore, we introduce a simple scaling thermostat that allows thermal fluctuations at a constant predicted mean temperature. We find that the initial stage spinodal decomposition is strongly affected by the temperature field. The separated phases react on density changes with a change in temperature. Although, the thermal conduction acts very slowly, thermal deviations are eventually compensated. The domain growth in the late stage of demixing is found to be rather unaffected by thermal fluctuations. We observe a transition from the Lifshitz-Slyozov growth rate with 1/3 exponent to the inertial hydrodynamics regime with a rate of 2/3, only excepted from simulations near the critical point where the liquid droplets are observed to nucleate directly in a spherical shape. The transition between the growth regimes is found to occur earlier for higher initial temperatures. We explain this time dependency with the phase interfaces that become more diffuse and overlap with approaching the critical point. A prolonging behavior of the demixing process is observed and also expected to depend on temperature. It is further found that the observations can excellently explain the growth behavior for pure nonisothermal simulations that are performed without thermostat.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

smoothed particle hydrodynamics, complex fluids, phase separation, spinodal decomposition

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PÜTZ, Martin, Peter NIELABA, 2015. Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics. In: Physical Review E. 2015, 91(3), 032303. ISSN 1539-3755. eISSN 1550-2376. Available under: doi: 10.1103/PhysRevE.91.032303
BibTex
@article{Putz2015Effec-30328,
  year={2015},
  doi={10.1103/PhysRevE.91.032303},
  title={Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics},
  number={3},
  volume={91},
  issn={1539-3755},
  journal={Physical Review E},
  author={Pütz, Martin and Nielaba, Peter},
  note={Article Number: 032303}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30328">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2015</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30328/3/Puetz_0-283460.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30328/3/Puetz_0-283460.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30328"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T09:01:22Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">We present a numerical method for simulations of spinodal decomposition of liquid-vapor systems. The results are in excellent agreement with theoretical predictions for all expected time regimes from the initial growth of “homophase fluctuations” up to the inertial hydrodynamics regime. The numerical approach follows a modern formulation of the smoothed particle hydrodynamics method with a van der Waals equation of state and thermal conduction. The dynamics and thermal evolution of instantaneously temperature-quenched systems are investigated. Therefore, we introduce a simple scaling thermostat that allows thermal fluctuations at a constant predicted mean temperature. We find that the initial stage spinodal decomposition is strongly affected by the temperature field. The separated phases react on density changes with a change in temperature. Although, the thermal conduction acts very slowly, thermal deviations are eventually compensated. The domain growth in the late stage of demixing is found to be rather unaffected by thermal fluctuations. We observe a transition from the Lifshitz-Slyozov growth rate with 1/3 exponent to the inertial hydrodynamics regime with a rate of 2/3, only excepted from simulations near the critical point where the liquid droplets are observed to nucleate directly in a spherical shape. The transition between the growth regimes is found to occur earlier for higher initial temperatures. We explain this time dependency with the phase interfaces that become more diffuse and overlap with approaching the critical point. A prolonging behavior of the demixing process is observed and also expected to depend on temperature. It is further found that the observations can excellently explain the growth behavior for pure nonisothermal simulations that are performed without thermostat.</dcterms:abstract>
    <dc:contributor>Nielaba, Peter</dc:contributor>
    <dcterms:title>Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T09:01:22Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Nielaba, Peter</dc:creator>
    <dc:contributor>Pütz, Martin</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Pütz, Martin</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen