Publikation: ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The goal in multiobjective optimization is to determine the so-called Pareto set. Our optimization problem is governed by a parameter dependent semilinear elliptic partial differential equation (PDE). To solve it, we use a gradient based set-oriented numerical method. The numerical solution of the PDE by standard discretization methods usually leads to high computational effort. To overcome this difficulty, reduced-order modeling (ROM) is developed utilizing the reduced basis method. These model simplifications cause inexactness in the gradients. For that reason, an additional descent condition is proposed. Applying a modified subdivision algorithm, numerical experiments illustrate the efficiency of our solution approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BANHOLZER, Stefan, Bennet GEBKEN, Lena REICHLE, Stefan VOLKWEIN, 2021. ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization. In: Mathematical and Computational Applications. MDPI. 2021, 26(2), 32. ISSN 2297-8747. eISSN 1300-686X. Available under: doi: 10.3390/mca26020032BibTex
@article{Banholzer2021ROMba-52995.2, year={2021}, doi={10.3390/mca26020032}, title={ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization}, number={2}, volume={26}, issn={2297-8747}, journal={Mathematical and Computational Applications}, author={Banholzer, Stefan and Gebken, Bennet and Reichle, Lena and Volkwein, Stefan}, note={Article Number: 32} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52995.2"> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-05T11:09:03Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52995.2/1/Banholzer_2-1tlwgrxeiaqr10.pdf"/> <dcterms:title>ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52995.2/1/Banholzer_2-1tlwgrxeiaqr10.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Reichle, Lena</dc:contributor> <dc:creator>Banholzer, Stefan</dc:creator> <dc:creator>Reichle, Lena</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52995.2"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Banholzer, Stefan</dc:contributor> <dc:contributor>Gebken, Bennet</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dc:creator>Gebken, Bennet</dc:creator> <dcterms:abstract xml:lang="eng">The goal in multiobjective optimization is to determine the so-called Pareto set. Our optimization problem is governed by a parameter dependent semilinear elliptic partial differential equation (PDE). To solve it, we use a gradient based set-oriented numerical method. The numerical solution of the PDE by standard discretization methods usually leads to high computational effort. To overcome this difficulty, reduced-order modeling (ROM) is developed utilizing the reduced basis method. These model simplifications cause inexactness in the gradients. For that reason, an additional descent condition is proposed. Applying a modified subdivision algorithm, numerical experiments illustrate the efficiency of our solution approach.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-05T11:09:03Z</dc:date> <dc:creator>Volkwein, Stefan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>