Semidefinite representation for convex hulls of real algebraic curves

dc.contributor.authorScheiderer, Clausdeu
dc.date.accessioned2013-06-04T10:14:28Zdeu
dc.date.available2013-06-04T10:14:28Zdeu
dc.date.issued2012deu
dc.description.abstractWe prove that the closed convex hull of any one-dimensional semi-algebraic subset of R^n has a semidefinite representation, meaning that it can be written as a linear projection of the solution set of some linear matrix inequality. This is proved by an application of the moment relaxation method. Given a nonsingular affine real algebraic curve C and a compact semi-algebraic subset K of its R-points, the preordering P(K) of all regular functions on C that are nonnegative on K is known to be finitely generated. We prove that P(K) is stable, which means that uniform degree bounds exist for representing elements of P(K). We also extend this last result to the case where K is only virtually compact. The main technical tool for the proof of stability is the archimedean local-global principle. As a consequence from our results we establish the Helton-Nie conjecture in dimension two: Every convex semi-algebraic subset of R^2 has a semidefinite representation.eng
dc.identifier.arxiv1208.3865deu
dc.identifier.urihttp://kops.uni-konstanz.de/handle/123456789/23348
dc.language.isoengdeu
dc.legacy.dateIssued2013-06-04deu
dc.rightsterms-of-usedeu
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/deu
dc.subject.ddc510deu
dc.titleSemidefinite representation for convex hulls of real algebraic curveseng
dc.typePREPRINTdeu
dspace.entity.typePublication
kops.flag.knbibliographytrue
kops.identifier.nbnurn:nbn:de:bsz:352-233486deu
kops.submitter.emailmadeline.kreissner@uni-konstanz.dedeu
temp.submission.doi
temp.submission.source

Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
license.txt
Größe:
1.92 KB
Format:
Plain Text
Beschreibung:
license.txt
license.txtGröße: 1.92 KBDownloads: 0

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2018-08-27 09:32:04
1*
2013-06-04 10:14:28
* Ausgewählte Version