Publikation:

Semidefinite representation for convex hulls of real algebraic curves

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Scheiderer, Claus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus

unikn.publication.listelement.citation.prefix.version.undefined

Zusammenfassung

We prove that the closed convex hull of any one-dimensional semi-algebraic subset of R^n has a semidefinite representation, meaning that it can be written as a linear projection of the solution set of some linear matrix inequality. This is proved by an application of the moment relaxation method. Given a nonsingular affine real algebraic curve C and a compact semi-algebraic subset K of its R-points, the preordering P(K) of all regular functions on C that are nonnegative on K is known to be finitely generated. We prove that P(K) is stable, which means that uniform degree bounds exist for representing elements of P(K). We also extend this last result to the case where K is only virtually compact. The main technical tool for the proof of stability is the archimedean local-global principle. As a consequence from our results we establish the Helton-Nie conjecture in dimension two: Every convex semi-algebraic subset of R^2 has a semidefinite representation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690
BibTex
RDF

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2018-08-27 09:32:04
1*
2013-06-04 10:14:28
* Ausgewählte Version