Publikation: Sums of Hermitian squares as an approach to the BMV conjecture
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Linear and Multilinear Algebra. 2011, 59(1), pp. 1-9. ISSN 0308-1087. Available under: doi: 10.1080/03081080903119137
Zusammenfassung
Lieb and Seiringer stated in their reformulation of the Bessis-Moussa-Villani (BMV) conjecture that all coefficients of the polynomial p(t)=tr((A+tB)^m), where A and B are positive semidefinite matrices of the same size, are nonnegative. The coefficient of t^k is the trace of S_{m,k}(A, B), which is the sum of all words of length m in the letters A and B in which B appears exactly k times. We consider the case k=4 and show that S_{m,4}(A, B) is a sum of hermitian squares and commutators. In particular, the trace of S_{m,4}(A, B) is nonnegative.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Bessis-Moussa-Villani (BMV) conjecture, sum of squares, trace inequality, semidefinite programming
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BURGDORF, Sabine, 2011. Sums of Hermitian squares as an approach to the BMV conjecture. In: Linear and Multilinear Algebra. 2011, 59(1), pp. 1-9. ISSN 0308-1087. Available under: doi: 10.1080/03081080903119137BibTex
@article{Burgdorf2011Hermi-15309, year={2011}, doi={10.1080/03081080903119137}, title={Sums of Hermitian squares as an approach to the BMV conjecture}, number={1}, volume={59}, issn={0308-1087}, journal={Linear and Multilinear Algebra}, pages={1--9}, author={Burgdorf, Sabine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15309"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15309"/> <dc:creator>Burgdorf, Sabine</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2011</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-13T10:36:52Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-13T10:36:52Z</dc:date> <dcterms:abstract xml:lang="eng">Lieb and Seiringer stated in their reformulation of the Bessis-Moussa-Villani (BMV) conjecture that all coefficients of the polynomial p(t)=tr((A+tB)^m), where A and B are positive semidefinite matrices of the same size, are nonnegative. The coefficient of t^k is the trace of S_{m,k}(A, B), which is the sum of all words of length m in the letters A and B in which B appears exactly k times. We consider the case k=4 and show that S_{m,4}(A, B) is a sum of hermitian squares and commutators. In particular, the trace of S_{m,4}(A, B) is nonnegative.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Burgdorf, Sabine</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>Publ. in: Linear and Multilinear Algebra ; 59 (2011), 1. - pp. 1-9</dcterms:bibliographicCitation> <dcterms:title>Sums of Hermitian squares as an approach to the BMV conjecture</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja