Publikation:

Disregarding the Big Picture : Towards Local Image Quality Assessment

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, New Jersey, USA: IEEE, 2018, pp. 252-257. eISSN 2472-7814. ISBN 978-1-5386-2605-4. Available under: doi: 10.1109/QoMEX.2018.8463384

Zusammenfassung

Image quality has been studied almost exclusively as a global image property. It is common practice for IQA databases and metrics to quantify this abstract concept with a single number per image. We propose an approach to blind IQA based on a convolutional neural network (patchnet) that was trained on a novel set of 32,000 individually annotated patches of 64×64 pixel. We use this model to generate spatially small local quality maps of images taken from KonIQ-10k, a large and diverse in-the-wild database of authentically distorted images. We show that our local quality indicator correlates well with global MOS, going beyond the predictive ability of quality related attributes such as sharpness. Averaging of patchnet predictions already outperforms classical approaches to global MOS prediction that were trained to include global image features. We additionally experiment with a generic second-stage aggregation CNN to estimate mean opinion scores. Our latter model performs comparable to the state of the art with a PLCC of 0.81 on KonIQ-10k.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), 29. Mai 2018 - 1. Juni 2018, Cagliari, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WIEDEMANN, Oliver, Vlad HOSU, Hanhe LIN, Dietmar SAUPE, 2018. Disregarding the Big Picture : Towards Local Image Quality Assessment. 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). Cagliari, Italy, 29. Mai 2018 - 1. Juni 2018. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, New Jersey, USA: IEEE, 2018, pp. 252-257. eISSN 2472-7814. ISBN 978-1-5386-2605-4. Available under: doi: 10.1109/QoMEX.2018.8463384
BibTex
@inproceedings{Wiedemann2018Disre-44632,
  year={2018},
  doi={10.1109/QoMEX.2018.8463384},
  title={Disregarding the Big Picture : Towards Local Image Quality Assessment},
  isbn={978-1-5386-2605-4},
  publisher={IEEE},
  address={Piscataway, New Jersey, USA},
  booktitle={2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)},
  pages={252--257},
  author={Wiedemann, Oliver and Hosu, Vlad and Lin, Hanhe and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44632">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lin, Hanhe</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T10:52:12Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:creator>Wiedemann, Oliver</dc:creator>
    <dcterms:title>Disregarding the Big Picture : Towards Local Image Quality Assessment</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Wiedemann, Oliver</dc:contributor>
    <dcterms:abstract xml:lang="eng">Image quality has been studied almost exclusively as a global image property. It is common practice for IQA databases and metrics to quantify this abstract concept with a single number per image. We propose an approach to blind IQA based on a convolutional neural network (patchnet) that was trained on a novel set of 32,000 individually annotated patches of 64×64 pixel. We use this model to generate spatially small local quality maps of images taken from KonIQ-10k, a large and diverse in-the-wild database of authentically distorted images. We show that our local quality indicator correlates well with global MOS, going beyond the predictive ability of quality related attributes such as sharpness. Averaging of patchnet predictions already outperforms classical approaches to global MOS prediction that were trained to include global image features. We additionally experiment with a generic second-stage aggregation CNN to estimate mean opinion scores. Our latter model performs comparable to the state of the art with a PLCC of 0.81 on KonIQ-10k.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44632"/>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T10:52:12Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen