Publikation: Disregarding the Big Picture : Towards Local Image Quality Assessment
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Image quality has been studied almost exclusively as a global image property. It is common practice for IQA databases and metrics to quantify this abstract concept with a single number per image. We propose an approach to blind IQA based on a convolutional neural network (patchnet) that was trained on a novel set of 32,000 individually annotated patches of 64×64 pixel. We use this model to generate spatially small local quality maps of images taken from KonIQ-10k, a large and diverse in-the-wild database of authentically distorted images. We show that our local quality indicator correlates well with global MOS, going beyond the predictive ability of quality related attributes such as sharpness. Averaging of patchnet predictions already outperforms classical approaches to global MOS prediction that were trained to include global image features. We additionally experiment with a generic second-stage aggregation CNN to estimate mean opinion scores. Our latter model performs comparable to the state of the art with a PLCC of 0.81 on KonIQ-10k.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WIEDEMANN, Oliver, Vlad HOSU, Hanhe LIN, Dietmar SAUPE, 2018. Disregarding the Big Picture : Towards Local Image Quality Assessment. 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). Cagliari, Italy, 29. Mai 2018 - 1. Juni 2018. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). Piscataway, New Jersey, USA: IEEE, 2018, pp. 252-257. eISSN 2472-7814. ISBN 978-1-5386-2605-4. Available under: doi: 10.1109/QoMEX.2018.8463384BibTex
@inproceedings{Wiedemann2018Disre-44632, year={2018}, doi={10.1109/QoMEX.2018.8463384}, title={Disregarding the Big Picture : Towards Local Image Quality Assessment}, isbn={978-1-5386-2605-4}, publisher={IEEE}, address={Piscataway, New Jersey, USA}, booktitle={2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)}, pages={252--257}, author={Wiedemann, Oliver and Hosu, Vlad and Lin, Hanhe and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44632"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Lin, Hanhe</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Hosu, Vlad</dc:contributor> <dcterms:issued>2018</dcterms:issued> <dc:contributor>Lin, Hanhe</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T10:52:12Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:creator>Wiedemann, Oliver</dc:creator> <dcterms:title>Disregarding the Big Picture : Towards Local Image Quality Assessment</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Wiedemann, Oliver</dc:contributor> <dcterms:abstract xml:lang="eng">Image quality has been studied almost exclusively as a global image property. It is common practice for IQA databases and metrics to quantify this abstract concept with a single number per image. We propose an approach to blind IQA based on a convolutional neural network (patchnet) that was trained on a novel set of 32,000 individually annotated patches of 64×64 pixel. We use this model to generate spatially small local quality maps of images taken from KonIQ-10k, a large and diverse in-the-wild database of authentically distorted images. We show that our local quality indicator correlates well with global MOS, going beyond the predictive ability of quality related attributes such as sharpness. Averaging of patchnet predictions already outperforms classical approaches to global MOS prediction that were trained to include global image features. We additionally experiment with a generic second-stage aggregation CNN to estimate mean opinion scores. Our latter model performs comparable to the state of the art with a PLCC of 0.81 on KonIQ-10k.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44632"/> <dc:creator>Hosu, Vlad</dc:creator> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T10:52:12Z</dcterms:available> </rdf:Description> </rdf:RDF>