Publikation:

An Efficient Algorithm for Computing Causal Trace Sets in Causality Checking

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CHEN, Yu-Fang, ed., Chih-Hong CHENG, ed., Javier ESPARZA, ed.. Automated Technology for Verification and Analysis 17th International Symposium, ATVA 2019, Proceedings. Cham: Springer Nature, 2019, pp. 171-186. Lecture Notes in Computer Science. 11781. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-31783-6. Available under: doi: 10.1007/978-3-030-31784-3_10

Zusammenfassung

Causality Checking [LL13a] has been proposed as a finite state space exploration technique which computes ordered sequences of events that are considered to cause the violation of a reachability property. A crucial point in the implementation of Causality Checking is the computation and storage of all minimal counterexamples found during state space exploration. We refer to the set of all minimal counterexamples as a causal trace set. However, the Duplicate State Prefix Matching (DSPM) Algorithm that is currently used in Causality Checking only under-approximates the causal trace set. As we argue, without the approximation the DSPM algorithm is inefficient. We propose the, to the best of our knowledge, first efficient algorithm that precisely computes a causal trace set, avoiding approximation, called Causal Trace Backward Search (CTBS). We compare the DSPM and CTBS algorithms with respect to their worst case complexities, and by applying them to several case studies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

International Symposium on Automated Technology for Verification and Analysis : 17th International Symposium, ATVA 2019, 28. Okt. 2019 - 31. Okt. 2019, Taipei
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KÖLBL, Martin, Stefan LEUE, 2019. An Efficient Algorithm for Computing Causal Trace Sets in Causality Checking. International Symposium on Automated Technology for Verification and Analysis : 17th International Symposium, ATVA 2019. Taipei, 28. Okt. 2019 - 31. Okt. 2019. In: CHEN, Yu-Fang, ed., Chih-Hong CHENG, ed., Javier ESPARZA, ed.. Automated Technology for Verification and Analysis 17th International Symposium, ATVA 2019, Proceedings. Cham: Springer Nature, 2019, pp. 171-186. Lecture Notes in Computer Science. 11781. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-31783-6. Available under: doi: 10.1007/978-3-030-31784-3_10
BibTex
@inproceedings{Kolbl2019Effic-53474,
  year={2019},
  doi={10.1007/978-3-030-31784-3_10},
  title={An Efficient Algorithm for Computing Causal Trace Sets in Causality Checking},
  number={11781},
  isbn={978-3-030-31783-6},
  issn={0302-9743},
  publisher={Springer Nature},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Automated Technology for Verification and Analysis 17th International Symposium, ATVA 2019, Proceedings},
  pages={171--186},
  editor={Chen, Yu-Fang and Cheng, Chih-Hong and Esparza, Javier},
  author={Kölbl, Martin and Leue, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53474">
    <dc:contributor>Leue, Stefan</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-23T11:44:58Z</dcterms:available>
    <dc:creator>Kölbl, Martin</dc:creator>
    <dc:creator>Leue, Stefan</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2019</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53474"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53474/1/Koelbl_2-1u56ubk3dc5085.pdf"/>
    <dcterms:abstract xml:lang="eng">Causality Checking [LL13a] has been proposed as a finite state space exploration technique which computes ordered sequences of events that are considered to cause the violation of a reachability property. A crucial point in the implementation of Causality Checking is the computation and storage of all minimal counterexamples found during state space exploration. We refer to the set of all minimal counterexamples as a causal trace set. However, the Duplicate State Prefix Matching (DSPM) Algorithm that is currently used in Causality Checking only under-approximates the causal trace set. As we argue, without the approximation the DSPM algorithm is inefficient. We propose the, to the best of our knowledge, first efficient algorithm that precisely computes a causal trace set, avoiding approximation, called Causal Trace Backward Search (CTBS). We compare the DSPM and CTBS algorithms with respect to their worst case complexities, and by applying them to several case studies.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-23T11:44:58Z</dc:date>
    <dcterms:title>An Efficient Algorithm for Computing Causal Trace Sets in Causality Checking</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53474/1/Koelbl_2-1u56ubk3dc5085.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Kölbl, Martin</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen